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Abstract

Because of the 2015 Paris Agreement, the development of ESG investing and the
emergence of net zero emission policies, climate risk is certainly the most important
topic and challenge for asset owners and managers now and will remain so over the next
five years. It considerably changes portfolio allocation and the investment framework
of both passive and active investors. The goal of this paper is to conduct a survey of the
various climate risk measures that are available in the asset management industry and
the practices of portfolio construction that use these metrics. Therefore, the first part
of this paper lists the different climate risk metrics — e.g., carbon footprint, carbon
transition pathway, carbon transition and physical risks. The second part is dedicated
to portfolio optimization, in particular portfolio decarbonization and portfolio align-
ment (Paris-based benchmarks and net zero carbon objective). Among the different
findings, two are of great importance for investors. First, portfolio decarbonization is
more difficult when we include scope 3 carbon emissions. Indeed, optimizing using the
sum of scopes 1, 2 and 3 emissions leads to a portfolio with more tracking error risk
than using direct plus first tier indirect carbon emissions. Second, portfolio alignment
is more complex than portfolio decarbonization. Since aligning portfolios with scope
3 is becoming the standard approach to climate portfolio construction, the impact on
portfolio management may be substantial, and the divergence between carbon investing
and traditional investing will increase.

Keywords: Climate change, risk measure, carbon emissions, reduction scenario, carbon tra-
jectory, net zero emission, optimized portfolio, decarbonization, portfolio alignment, index
portfolio.
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1 Introduction

Climate risk is the biggest challenge to humanity of the 21st century. Indeed, climate change
implies rises in temperature that increase the likelihood of extreme weather events and
impact living patterns. Similarly, the latest IPCC assessment report paints a grim picture
of the future of the world (IPCC, 2021). Beyond the direct effect on natural hazards,
biodiversity, health or migration of human and animal populations, climate change may
also result in a new economic order because of the transition to a low-carbon economy. In
this context, the resilience of the financial system to climate-related risks is being called
into question. This is why climate change has become one of the largest systemic risks
(FSB, 2020) and is the top priority on the agenda of financial institutions, supervisors
and policymakers. Since all stakeholders play a key role in tackling climate risk, it also
concerns the asset management industry. Therefore, portfolio decarbonization, temperature
alignment, net zero carbon investment, Paris-aligned benchmark, etc. are the everyday
reality of both asset owners and managers.

Since 2014, interest in climate-related financial risks has been boosted by the development
of ESG investing in Europe (Bennani et al., 2018; Drei et al., 2019). While environmental
issues have been lagging behind social issues during the Covid-19 crisis, the net zero car-
bon race and the Glasgow COP 26 event have recently changed the equation, and climate
risk is now the hottest topic in asset management. Climate risk is definitively back on
the agenda of investors and goes beyond ESG ratings. However, climate risk assessment
methodologies have not reached maturity. We are in an earlier stage and there are many
initiatives for proposing climate risk measures that are different from traditional scope 1 + 2
carbon emissions. In particular, taking into account scope 3 changes the way we measure
the risk to portfolio construction. Indeed, the dispersion of carbon intensities with scope 3
is dramatically reduced, implying that it is more difficult to decarbonize a portfolio. Sim-
ilarly, investors are increasingly using carbon trajectories rather than just current carbon
measures. Therefore, the introduction of trend or target dynamics means a new approach
to portfolio allocation. More generally, the development of climate risk measures and their
sophistication have an impact on portfolio optimization. We notice that these approaches
were first developed on the side of passive management and low-carbon equity indices but
are now gaining a lot of traction in active management. As such, the goal of our research is
to conduct a survey of the current practices in terms of climate risk measures and portfolio
construction, which are now widely used by asset owners and managers.

This paper is organized as follows. In Section Two, we review the different climate
risk measures. First, we consider the carbon footprint and explain the concept of carbon
intensity. Then, we focus on carbon transition pathways that are a dynamic extension of
carbon emissions. These metrics are particularly important for defining a net zero carbon
emission policy. We also study carbon transition and physical risks and show their differences
from an investment point of view. Finally, this section ends with several key performance
indicators that are derived from ESG scoring, green revenues, etc. Section Three is dedicated
to portfolio optimization when imposing climate risk constraints. First, we present the
several portfolio decarbonization methodologies. In particular, we show how using carbon
emissions differs from using carbon intensity. Then, we investigate the portfolio alignment
approach. In particular, we focus on two methods. The first one corresponds to the approach
of Paris-aligned benchmarks. We highlight the impact of using scope 3 instead of scopes
1 and 2. The second method defines the net zero objective. We show how the dynamics
of carbon intensity change the portfolio allocation with respect to a pure decarbonization
approach. Finally, Section Four offers some concluding remarks.
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2 Climate risk measures

Traditional portfolio optimization requires input data such as the vector µ of expected
returns, the vector σ of asset volatilities and the correlation matrix ρ of asset returns1

(Roncalli, 2013). Let x = (x1, . . . , xn) be the vector of portfolio weights. We can then
compute the first and second moments of the stochastic portfolio return2. In particular, the
portfolio risk corresponds to the portfolio volatility σ (x). When introducing climate-related
risks, we have to define another measure that assesses the risk of climate change. For that,
we generally consider a climate metric Ci associated with asset i and assume that the climate
risk measure is linear:

C (x) =

n∑
i=1

xiCi (1)

The nature of the climate risk measure is then different from the volatility risk measure
since the latter satisfies the subadditivity property:

σ (x) ≤
n∑
i=1

xiσi (2)

Even if C (x) is a convex risk measure, it is an abuse of language because there is no way to
diversify the climate risk:

C (x) ≮
n∑
i=1

xiCi (3)

Therefore, C (x) plays more the role of an expected loss than a risk measure.

2.1 Carbon footprint

Carbon footprint is a generic term used to define the total greenhouse gas (GHG) emissions
caused by a given system, activity, company, country, or region. Greenhouse gases are made
up of water vapor (H2O), carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O),
Ozone (O3), etc. They absorb and emit radiation energy, causing the greenhouse effect.
The greenhouse effect was a crucial factor for the development of human life on Earth.
Indeed, without the greenhouse effect, the average temperature of Earth’s surface would be
about −18◦C. With the greenhouse effect, the current temperature of Earth’s surface is
about +15◦C. Nevertheless, the increasing concentration of some GHGs is an issue because
it is a factor in global warming. It mainly concerns carbon dioxide, and to a lesser extent,
methane and nitrous oxide.

Carbon footprint is generally measured in carbon dioxide equivalent (CO2e), which is
a term for describing different GHGs in a common unit. In this framework, a quantity of
GHG is expressed as CO2e by multiplying the GHG amount by its global warming potential
(GWP). The GWP of a gas is the amount of CO2 that would warm the earth equally. For
instance, the IPCC’s 4th Assessment Report has used the following rules3: 1 kg of methane
corresponds to 25 kg of CO2 and 1 kg of nitrous oxide corresponds to 298 kg of CO2. The
definition of a common unit allows two companies to be compared properly. However, carbon
emissions cannot be compared fairly if the size of the two companies differs. Therefore, it
can be useful to transform carbon emissions into normalized metrics, which are called carbon
intensities.

1Using the parameters σ and ρ, we can form the covariance matrix Σ, which is defined by Σi,j = ρi,jσiσj .
2The first moment is equal to the expected return of the portfolio µ (x) = x>µ while the second moment

is equal to the variance of the portfolio return σ2 (x) = x>Σx.
3GWP estimates depend on several factors such as the atmospheric lifetime of the gas. This explains

that estimates are different from one study to another (Derwent, 2020).
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2.1.1 Carbon emissions

It is now possible to access the carbon emissions of an increasing number of companies.
However, since GHG are not physically material, even this raw indicator is subject to un-
certainty at the company level. To provide a common accounting basis that can be used
by states and companies, and to limit the measurement gap, the Greenhouse Gas Protocol
(GHGP) classifies a company’s greenhouse gas emissions in three scopes4:

• Scope 1 denotes direct GHG emissions occurring from sources that are owned or con-
trolled by the company.

• Scope 2 corresponds to the indirect greenhouse gas emissions from consumption of
purchased electricity, heat or steam. Scope 2 emissions can be computed using the
energy mix of the country (location-based) or the energy mix of the utility company
supplying the electricity.

• Finally, Scope 3 are other indirect emissions5, such as the extraction and production
of purchased materials and fuels, transport-related activities in vehicles not owned or
controlled by the reporting entity, electricity-related activities not covered in Scope 2.
Scope 3 upstream emissions include the indirect emissions that come from the supply
side, while scope 3 downstream emissions are mostly associated with the product sold
by the entity.

In what follows, we distinguish these three carbon emission measures by introducing the
notations CE1, CE2 and CE3. In carbon emission databases, we also observe that carbon
scopes can be self-reported or estimated. Moreover, they are generally expressed in tons of
carbon dioxide equivalent or tCO2e.

Data on GHG emissions are easily and freely available when they concern countries and
regions6. For corporations, two main sources of GHG emissions are generally used: the
CDP database and the S&P Trucost data7. In what follows, we use the latter since it seems
to be more comprehensive. Indeed, it contains the self-reported values of companies from
CDP. When they are not available, estimated values are provided. For the year 2019, we
have about 15 700 corporations. The carbon emission histograms for the three scopes are
reported in Figure 22 on page 47. If we sum up all the observations, we obtain the following
figures (expressed in GtCO2e): CE1 = 15.57, CE2 = 2.45 and CE3 = 10.17. It follows that
the total emissions of these corporate firms are about 28.2 GtCO2e, which represents more
than 75% of the 36 GtCO2e global emissions.

Figure 1 shows the breakdown of these GHG emissions by sector. We notice that the
direct emissions are concentrated in a few sectors: Utilities, Materials, Energy and to some
extent Industrials. Scope 2 emissions are more equally distributed. On the other hand,
every sector’s scope 2 emissions are already accounted for in the scope 1 emissions of the
Utilities sector. This double-counting issue becomes particularly problematic when trying
to build the carbon footprint of a portfolio. Finally, scope 3 emissions are discriminant
for Information Technology, Health Care, Consumer Staples, Consumer Discretionary and
Financials. However, estimating scope 3 emissions is still subject to uncertainty. The
distribution of the absolute emissions within GICS sectors is also an issue. Contrary to

4The standards can be found at www.ghgprotocol.org.
5See Appendix A.3 on page 44 about the issues of scope 3 emissions measurement.
6They can be retrieved from the World Bank (data.worldbank.org/topic/climate-change),

Climate Watch Data (www.climatewatchdata.org/ghg-emissions), Global Carbon Project (www.
globalcarbonproject.org), etc.

7A description of these two databases can be found at www.cdp.net/en/data and www.spglobal.com/esg/

trucost.
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Figure 1: Total absolute scopes per GICS sector in GtCO2e
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Source: Trucost reporting year 2019 & Authors’ calculations.

Figure 2: QQ-plot of carbon scopes per GICS sector in MtCO2e
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commonly used centered scores, the emissions are concentrated on very few actors. Filtering
the outliers8, we obtain the distribution of the values given in Figure 2. Although the
filtration allows us to visualize the distribution, we are faced with multiple scaling issues
(sector, size, country), making absolute emissions difficult to use in portfolio construction.

2.1.2 Carbon metrics

Definition The carbon intensity of company i with respect to scope j is a normalization
of the carbon emissions:

CIi,j =
CEi,j
Yi

(4)

where CEi,j is the company’s absolute scope j emissions and Yi is an output indicator
measuring its activity. In general, revenues (expressed in $) are used to compute carbon
intensities. For some major sectors, it is possible to find intensities per production unit.
For instance, for a company from the Utilities sector, a carbon intensity in CO2e/kWh is
more informative in terms of carbon efficiency than a carbon intensity in CO2e/$. In what
follows, we use revenue as the normalization variable when one is not defined. Some ex-
amples are provided in Table 1. Comparing the carbon emissions of a football club like
Juventus with a petroleum company like BP does not make sense, because their economic
size is not comparable. This explains why the carbon intensity measure is more popular
than the carbon emission measure in portfolio management. These examples also illustrate
how interconnected the three scopes are. Thus, if a company extensively outsources the
manufacturing of its products, it reduces its scope 1 but increases its scope 3 emissions. It
is also possible to deal with more disaggregated data, for instance by making the distinc-
tion between upstream and downstream emissions resulting from the entire supply chain.
However, it is not straightforward since the accuracy of scope 3 is not obvious9.

Table 1: Examples of carbon emissions and intensity

Company
Emission (in tCO2e) Revenue Intensity (in tCO2e/$ mn)

Scope 1 Scope 2 Scope 3 (in $ mn) Scope 1 Scope 2 Scope 3
Alphabet 74 462 5 116 949 7 166 240 161 857 0.460 31.614 44.275
Amazon 5 760 000 5 500 000 20 054 722 280 522 20.533 19.606 71.491
Apple 50 463 862 127 27 618 943 260 174 0.194 3.314 106.156
BP 49 199 999 5 200 000 103 840 194 276 850 177.714 18.783 375.077
Danone 722 122 944 877 28 969 780 28 308 25.509 33.378 1023.365
Enel 69 981,891 5 365 386 8 726 973 86 610 808.016 61.949 100.762
Juventus 6 665 15 739 35 842 709 9.401 22.198 50.553
LVMH 67 613 262 609 11 853 749 60 083 1.125 4.371 197.291
Microsoft 113 414 3 556 553 5 977 488 125 843 0.901 28.262 47.500
Nestle 3 291 303 3 206 495 61 262 078 93 153 35.332 34.422 657.647
Netflix 38 481 145 443 1 900 283 20 156 1.909 7.216 94.277
Total 40 909 135 3 596 127 49 831 487 200 316 204.223 17.952 248.764
Volkswagen 4 494 066 5 973 894 65 335 372 282 817 15.890 21.123 231.016

Source: Trucost reporting year 2019.

Another advantage of carbon intensity is reducing the skewness of the distribution com-
pared to absolute emissions. In Figure 23 on page 48, we show the carbon intensity his-
tograms when the normalization variable is revenues in dollars. In Table 2, we report some

8We exclude the companies below the 20th percentile and above the 80th percentile.
9For example, the figures of BP, Enel and Total are very different and may be difficult to understand.
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statistics (average, median, 95% percentile and maximum). We verify the skewness reduc-
tion. For instance, if we compute the ratio between Q

(
95%

)
and the median, it takes the

value 233, 43 and 37 for the three scopes when we consider carbon emissions. These figures
become 69, 9 and 5 when the ratio is computed with the carbon intensity.

Table 2: Statistics of carbon emissions and intensity

Scope
Emission (in 106· tCO2e) Intensity (in 103· tCO2e/$ mn)

Avg. Med. Q
(
95%

)
Max. Avg. Med. Q

(
95%

)
Max.

1 0.992 0.010 2.28 587.1 0.277 0.016 1.14 207.4
2 0.156 0.012 0.53 99.1 0.053 0.021 0.19 11.9
3 0.648 0.067 2.50 137.5 0.170 0.099 0.51 2.0

Source: Trucost reporting year 2019 & Authors’ calculations.

In Figure 3, we show the Spearman correlations between the several carbon metrics10.
Because of the economic size effect, we verify that carbon emissions are more correlated
than carbon intensities (80% vs. 55% on average). Regarding these latter measures, we
observe a high correlation of 66% between CI1 and CI3. Nevertheless, this figure is mainly
explained by the sector effect. Indeed, if we compute rank correlations by sector11, they are
lower except for some specific sectors such as Utilities.

Figure 3: Rank correlation matrix of carbon metrics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Source: Trucost reporting year 2019 & Authors’ calculations.

10The values are reported in Table 14 on page 47.
11See Table 15 on page 48.
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Additivity property Carbon intensity is additive when we consider a given issuer. For
instance, the carbon intensity of scopes 1, 2 and 3 is the sum of the different scopes:

CIi,1+2+3 =
CEi,1 + CEi,2 + CEi,3

Yi
= CIi,1 + CIi,2 + CIi,3 (5)

Nevertheless, the additivity property is not satisfied when we consider a set of issuers. Let
us consider a portfolio x investing in n assets (stocks or bonds). Its carbon emissions are
equal to:

CEj (x) =

n∑
i=1

Wi

MVi
CEi,j =

n∑
i=1

$iCEi,j (6)

where MVi is the market value of the company i, Wi is the dollar value invested in the
company i and $i is the ownership ratio:

$i =
Wi

MVi
(7)

Let xi be the weight of the asset i in the portfolio x. By definition, the wealth invested in
this asset is equal to Wi = xiW where W =

∑n
i=1Wi is the dollar value of the portfolio.

We deduce that:

$i = xi
W

MVi
(8)

and:

CEj (x) =

n∑
i=1

(
xi

W

MVi

)
CEi,j (9)

If we consider the weighted-average carbon intensity (WACI), we obtain:

CIj (x) =

n∑
i=1

xiCIi,j

=
n∑
i=1

xi
CEi,j
Yi

(10)

It is obvious that the Equations (9) and (10) are mutually satisfied if and only if the normal-
ization metric Yi of the carbon intensity is proportional to the market value MVi. Indeed,
we can interpret the carbon emissions of a portfolio as a weighted-average carbon intensity:

CEj (x) = W

 n∑
i=1

xiCIMVi,j

 (11)

where CIMVi,j is a carbon intensity measure, where the normalization factor is the market
value of the company:

CIMVi,j =
CEi,j
MVi

(12)

Let us assume that Equation (6) holds. In Appendix A.4.1 on page 45, we show that:

CIj (x) =

n∑
i=1

ωiCIi,j (13)
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where the weights ωi are equal to:

ωi =
xi

Yi
MVi∑n

k=1
xk

Yk
MVk

=
xiSRi∑n
k=1 xkSRk

(14)

and SRi = Yi/MVi is the revenue-to-market value (or sales-to-price) ratio. Contrary to
common belief, analyzing the carbon risk of a portfolio using carbon intensity or carbon
emissions is then not equivalent.

Remark 1. CEj (x) is generally expressed in tCO2e per 1$ mn invested (W = $106)

Let us illustrate the discrepancy between the two approaches. We consider two issuers.
We assume that the first issuer’s carbon emissions, revenue and market value are equal to
CE1,j = 5×106, Y1 = 2×105 andMV1 = 107. It follows that its carbon intensity is equal to
CI1,j = 25. For the second issuer, we have CE2,j = 5× 107, Y2 = 4× 106 and MV2 = 107.
We deduce that CI2,j = 12.5. In Table 3, we report the carbon intensity of the portfolio
when it is made up of these two issuers (W = $10 mn). We observe that the intensity-based
approach overestimates the carbon intensity in our case, because the first issuer presents
a higher sales-to-price ratio. In fact, the discrepancy error made by the intensity-based
approach is highly dependent on the distribution of CIi,j and SRi. For instance, it may be
a huge problem when we mix large cap and small cap stocks.

Table 3: Comparison between the two approaches for computing the carbon intensity

x1 x2
CEj (x)
(×106)

Y (x)
(×106)

CEj (x)

Y (x)
CIj (x)

0% 100% 50.00 4.00 12.50 12.50
10% 90% 45.50 3.62 12.57 13.75
20% 80% 41.00 3.24 12.65 15.00
30% 70% 36.50 2.86 12.76 16.25
50% 50% 27.50 2.10 13.10 18.75
70% 30% 18.50 1.34 13.81 21.25
80% 20% 14.00 0.96 14.58 22.50
90% 10% 9.50 0.58 16.38 23.75

100% 0% 5.00 0.20 25.00 25.00

2.2 Carbon transition pathway

2.2.1 Carbon reduction scenario

The most recent IPCC report urges action to drastically reduce carbon emissions to net zero
by 2050 (IPCC, 2021). The carbon reduction trajectory imposes that we need to reduce
total emissions by at least 7% every year between 2019 and 2050. IEA (2021) has also
published its net zero emission (NZE) scenario (see Table 4). It implies a 40.11% reduction
of carbon emissions in 2030 and 61.84% in 2035. In 2050, gross emissions would be 1.94
GtCO2e offset by the carbon capture and storage (CCS) technology. These two scenarios
are reported in Figure 4.

Besides net zero carbon scenarios, we can find other carbon scenarios, whose goal is to
limit global warming. For instance, the European Union has framed new climate benchmarks
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Table 4: IEA NZE scenario (in GtCO2e)

Year 2019 2025 2030 2035 2040 2045 2050
Gross emission 35.90 30.30 21.50 13.70 7.77 4.30 1.94
CCS 0.00 −0.06 −0.32 −0.96 −1.46 −1.80 −1.94
Net emission 35.90 30.24 21.18 12.74 6.31 2.50 0.00
Reduction (in %) 0.00 15.60 40.11 61.84 78.36 88.02 94.60

Source: IEA (2021, Chapter 2, Figure 2.3, page 55).

designed to align investors’ portfolios with the Paris agreement. For instance, the EU Paris
aligned benchmark (PAB) label implies a year-on-year self-decarbonization of 7% and an
initial carbon intensity reduction of 50% with respect to the investable universe in 2021.
In the case of the EU climate transition benchmark (CTB) label, this last figure is equal
to 30%. We notice that these two labels use the carbon intensity12 instead of the carbon
emission measure.

Figure 4: Two net zero emission scenarios
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Source: IEA (2021) & Authors’ calculations.

Remark 2. Carbon reduction scenarios can be applied to regions, countries, sectors, etc.
For example, IEA (2021, Chapter 3, pages 99-150) proposes sectoral pathways to net zero
emissions for electricity, transport, buildings, etc. Moreover, we observe the development
of physical carbon intensity by production unit (CO2/km, CO2/ton, CO2/km2, CO2/kWh,
etc.). The issue is then how to compare and aggregate these different intensity measures.

12The normalization variable is then the enterprise value including cash and not the revenue.
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2.2.2 Carbon trajectory

Trend Defining indicators describing individual transitions is not trivial. For some issuers,
we can retrieve declared emissions since 2005, but the coverage starts to become more
widespread starting in 2010. Using the historical records, it is possible to estimate the trend
and make some carbon budget projections. For instance, we can consider a linear regression
model:

CEi,j (t) = β0 + β1t+ u (t) for t ≤ t0 (15)

where t0 is the current date. Once the model is estimated, we can project the future carbon
emissions:

CEtrend
i,j (t0 + h) = β̂0 + β̂1 (t0 + h) for h = 1, 2, . . . (16)

Figure 5 illustrates this approach when we consider the company Λ and the direct carbon
emissions (scope 1). Computational details are given in Appendix A.5.2 on page 51. We
notice that the projected value of direct carbon emissions is equal to zero in 2040. Using
these trends, we can define the annual contribution of company i to reducing emissions:

Rtrend
i =

1

t− t0

∑3
j=1 CE

trend
i,j (t0)−

∑3
j=1 CE

trend
i,j (t)∑3

j=1 CE
trend
i,j (t0)

(17)

Figure 5: Scope 1 trajectory of the company Λ (in MtCO2e)

Source: Carbon Disclosure Project reporting year 2019 & Authors’ calculations.

Target In addition, companies can directly disclose carbon targets CEtarget
i,j (t) at a given

horizon date t for a given scope j. The Carbon Disclosure Project gathers information
about reduction targets (base year, target year, target value, scope, percentage of the scope
concerned, etc.) in its climate change emissions management dataset. For example, we
have reported the company Λ’s targets announced in 2016 and 2019. We observe that the

11



Portfolio Construction with Climate Risk Measures

2019 targets are more ambitious than the 2016 targets, and the targets are greater than the
projections. As previously, we can compute the annual reduction using Equation (17) and
replacing CEtrend

i,j (t) with CEtarget
i,j (t). Therefore, the synthetic trajectory of the company

can be derived from both projected and reported annual reductions.

2.2.3 Temperature

Temperature tags are indicators assigned to companies by mixing various metrics. The
main ingredient is the carbon trajectory. Based on the carbon reduction required to achieve
a climate scenario, and individual trajectories, it is possible to interpolate a temperature
for each issuer. For instance, Table 5 provides some figures at the global level. Indeed, if
we would like to achieve a 1.8◦C scenario, this implies reducing absolute carbon emissions
with respect to year 2005 by 51.5%. For each company, we can consider a linear projection
of the carbon trajectory, and perform some corrections using additional information such
as reduction targets, changes in the share of green revenues, investment in research and
development associated with transition and green patents, etc.

Table 5: Global temperature changes in % (wrt year 2005)

Scenario 2010 2020 2030 2040 2050
1.5◦C (SSP2, RCP 1.9W/m2) +7.5% 17.1% −28.6% −63.9% −87.3%
1.8◦C (SSP2, RCP 2.6W/m2) +8.1% 17.4% −14.5% −34.5% −51.5%
2.2◦C (SSP2, RCP 3.4W/m2) +8.1% 19.9% +8.2% −5.8% −20.6%
3.0◦C (SSP2, RCP 4.5W/m2) +8.1% 21.5% +24.4% +22.2% +11.3%
4.0◦C (SSP2, RCP 6.0W/m2) +8.1% 22.2% +33.6% +42.7% +45.9%
5.0◦C (SSP2, Baseline) +8.1% 26.8% +43.7% +58.7% +70.0%

Source: SSP Database (Shared Socioeconomic Pathways), Version 2.0.

However, there are multiple methodologies that do not always provide the same output
in terms of aggregated temperature (Raynaud et al., 2021a,b). One of the main pitfalls is
the aggregation of individual trajectories, or in other terms, the definition of the portfolio
trajectory based on the trajectories of issuers (Le Guenedal et al., 2020). For example, the
Carbon Disclosure Project (CDP) provides temperature ratings that mix the trajectories
with issuer targets13. Among the 8 500 companies in the database, about 3 300 have a
CDP temperature rating. When carbon targets are used, they are based on the Science
Based Target initiative (SBT), however it only represents 12% of the sample for scope 1 + 2,
compared to 1% for scope 3. In Table 6, we report the frequencies of the temperature ratings
provided by CDP and Iceberg. For CDP data, we notice that most of companies have a
rating corresponding to a temperature of 3.2◦C.

2.3 Carbon transition risk

While carbon footprint and pathway are measured by CO2 emissions, which are based on
fundamentals and physical data, we now consider carbon risk metrics, which are by nature
based on market data. In other words, they are related to the financial market’s perception
of the potentially reduced impact of climate policies’ on securities issued by corporations.
Recently, two main approaches have been developed. The first one assesses how an increase
in carbon prices and taxes influences the credit risk of the issuer whereas the second method
measures how sensitive the asset price is to a carbon market factor.

13The methodology is available at www.cdp.net/en/investor/temperature-ratings.
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Table 6: Frequency of temperature ratings (in %)

Range
CDP

Iceberg
Scope 1 + 2 + 3 Short-term Mid-term Long-term

T ≤ 1.0◦C 0.00 0.00 0.00 0.00 1.01
1.0◦C < T ≤ 1.5◦C 1.44 2.92 10.68 2.71 2.60
1.5◦C < T ≤ 2.0◦C 6.20 1.26 13.03 3.94 3.14
2.0◦C < T ≤ 2.5◦C 6.86 3.07 7.46 2.68 21.76
2.5◦C < T ≤ 3.0◦C 7.64 1.99 4.21 0.48 30.87
3.0◦C < T ≤ 3.5◦C 76.95 89.77 62.80 90.07 32.30
3.5◦C < T ≤ 4.0◦C 0.78 0.81 1.44 0.09 2.23
4.0◦C < T ≤ 4.5◦C 0.12 0.18 0.36 0.03 3.31
4.5◦C < T ≤ 5.0◦C 0.00 0.00 0.00 0.00 0.77

T = 3.2◦C 52.09 88.50 61.39 89.95 0.01

Source: CDP Temperature Ratings Dataset, version 1.1, February 2021 & Iceberg Data Lab (2021).

2.3.1 Carbon price

The Paris agreement defines reduction paths that are determined at the national level. These
targets are often translated into pricing mechanisms for GHG emissions whose requirements
increase over time. In practice, there are two main pricing systems: the carbon tax and the
emissions trading system (ETS). Thus, emitting companies must pay the tax corresponding
to their emissions if they are subject to a carbon tax, or buy carbon allowance on a cap-and-
trade market if they are subject to an ETS. The coverage of these mechanisms is rapidly
increasing14. Rapid fluctuations in the price of carbon can represent a risk for companies’
businesses. Therefore, Bouchet and Le Guenedal (2020) suggested identifying for each com-
pany the carbon price that would lead the default probability in the Merton model to exceed
a certain threshold. Based on the assumptions that the enterprise value V is proportional
to the earnings before interest, taxes, depreciation, and amortization (EBITDA) and that
the debt D remains constant, we can define the carbon price margin as:

CPMi =

1− exp

(
σi
√
τΦ (−θ)−

(
r +

1

2
σ2
i

)
τ

)
Di

Vi

 EBITDAi

CEi,1

where σi is the volatility of the enterprise value, τ is the maturity and r is the risk-free
rate. The parameter θ is a threshold of default probability, for instance 50%. A low value of
CPM means that company’s capital structure leaves it vulnerable to a minor change in the
carbon price. Inversely, using this methodology, it would be possible to assess the default
risk over a portfolio subject to changes in local carbon prices. However, data availability on
the breakdown of regional emissions and the lack of diffusion effect, from intensive sectors
to the rest of the economy, limits the interest of this exercise on a diversified portfolio.

14The state of the art pricing mechanism can be found on https://carbonpricingdashboard.worldbank.

org.
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2.3.2 Carbon beta

Introduced by Harris (2015) and Görgen et al. (2019), the underlying idea of the carbon
beta is to estimate the sensitivity of the stock return with respect to a carbon risk factor.
Therefore, this framework adopts the viewpoint of the arbitrage pricing theory by considering
that carbon is not only an idiosyncratic risk for an issuer, but also a systematic risk factor
like the Fama-French-Carhart market factors (Roncalli et al., 2021). Let Ri (t) be the return
of stock i at time t. We assume that:

Ri (t) = αi (t) + βi,mkt (t)Rmkt (t) +

m∑
j=1

βi,Fj (t)RFj (t) + βi,Carbon (t)RCarbon (t) + εi (t)

where Rmkt (t) is the return of the market risk factor, RFj
(t) is the return of the jth

alternative risk factor, RCarbon (t) is the return of the carbon risk factor and εi (t) is a

white noise process. The estimation β̂i,Carbon (t) of the carbon beta CBi can be done using
ordinary least squares (Görgen et al., 2019) or Kalman filtering (Roncalli et al., 2020). One
of the difficulties is building the carbon risk factor, which systematically corresponds to a
long/short portfolio between “green” and “brown” stocks. For instance, Görgen et al. (2019)
defined a brown-minus-green factor by using many carbon metrics. Nevertheless, Roncalli
et al. (2020) showed that this risk factor is highly correlated to a simpler factor based on
small number of carbon indicators15.

Engle et al. (2020) proposed a related approach where the carbon risk factor is replaced
by a climate risk news index IClimate:

Ri (t) = αi (t) + βi,mkt (t)Rmkt (t) +

m∑
j=1

βi,Fj
(t)RFj

(t) + βi,Climate (t) IClimate (t) + εi (t)

In this case, IClimate corresponds to a time series that measures the sentiment about the cli-
mate change. The big challenge is to apply the appropriate text mining tools on newspapers
and media data (Apel et al., 2021; Ardia et al., 2021; Engle et al., 2020).

2.4 Climate physical risk

Responsible investors have paid more attention to the transition risk than to the physical
risk. However, recent events show that physical risk is also a big concern. It corresponds to
the financial losses that really come from climate change, and not from the adaptation of
the economy to prevent them. It includes droughts, floods, storms, etc. This risk is more
difficult to quantify, and its evaluation requires multidisciplinary methodologies: climate
modeling, physical asset geolocation, financial loss estimation, etc. The general steps for
developing an integrated approach are illustrated in Figure 6. For example, we refer to
Le Guenedal et al. (2021) for the description of a full integrated methodology to measure
cyclone-related physical risk.

2.4.1 Climate variable and data source

We define the climate data of source s as Θs =
{
θ (λ, ϕ, z, t)

}
where θ = (θ1, . . . , θk) is a

vector of k climate variables such as temperature, pressure or wind speed. Each variable θk
has four coordinates: the latitude λ, the longitude ϕ, the height (or altitude) z and the time
t. We can consider three types of sources: meteorological records, reanalysis and historical
simulations by a climate model.

15See also Gurvich and Creamer (2021) for alternative definitions of the carbon risk factor.
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Figure 6: Physical risk modeling
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Essentially, the first source corresponds to physical measures made in space and time,
but these measures do not necessarily cover the entire grid. The second source collects the
outputs of a model that has been calibrated with meteorological records and gives the best
estimates of past climate. For example, Figure 7 is a slice of the MERRA-2 reanalysis at
a height of 10 meters on 7th November 2013. The red dot is the location of the eye of the
tropical cyclone Haiyan, which affected more than 10 million people in the Philippines. For
instance, these data can be used to fit natural disaster sensitivity to climate change and
calibrate damage functions. The last possible source of climate data is a climate model. It
can be run in the past and in the future for different representative concentration pathway
(RCP) scenarios.

Climate models are constantly improved and the different phases of the coupled model
intercomparison project (CMIP) provide outputs of climate variables. For instance, the
latest results used by the intergovernmental panel on climate change (IPCC) are based on
the sixth phase of the project (CMIP6). From a financial point of view, it is important to
take into account the data of this third source. For instance, in the case of wind, the output
of the projection can provide information about the future value of wind farms in different
representative concentration pathways (see Figure 7).

2.4.2 Event intensity sensitivity

To measure physical risks from these raw climate variables, we first define the sensitivity

of the intensity of extreme events to climate change16. Let E
[
I
(
Θs (C)

)]
be the expected

intensity of the event in the scenario associated with the GHG concentration C. The sensi-
tivity of the event is equal to:

∆I (C) = E
[
I
(
Θs (C)

)]
− I

(
Θs (C0)

)
(18)

16More precisely, one can simulate events using Monte-Carlo methods in such a way that these events are
sensitive to raw climate data.
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Figure 7: Slice of wind speed at 10 meters (07/11/2013, tropical cyclone Haiyan)
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Source: Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), Global

Modeling and Assimilation Office, NASA.

where I
(
Θs (C0)

)
is the current intensity or the reference intensity in a scenario where

climate objectives are met. For instance, we know that the maximum wind of tropical
cyclones increases by more than 10% in scenarios with a high GHG concentration.

2.4.3 Asset exposure

Estimating the future asset value Ψ (t) of the portfolio can be puzzling. For instance, Le
Guenedal et al. (2021) used the shared-socioeconomic pathways (SSP) to project GDP per
capita and local values of physical assets in the long term. The asset value of the portfolio
can then be written as:

Ψ (t) =

n∑
j=1

xjΨj (λ, ϕ, t) (19)

where Ψj (λ, ϕ, t) is the geolocated asset value estimated at time t and xj is the weight of
asset j in the portfolio. Therefore, geolocation of the portfolio is another important feature
in the context of physical risks. Some open-source initiatives allow us to estimate the risk
at the country level. For instance, for the utilities sector, one could map issuer production
(see Figure 11 on page 20) and production sites given in Figure 8 to estimate the physical
risk exposure of this sector.

2.4.4 Vulnerability

Based on historical records, we define the damage function Ωj (I) ∈ [0, 1] as the fraction of
property loss with respect to the intensity. It is generally calibrated on past damages (insur-
ance claims, economic loss, etc.) and disasters. For example, the global disaster database
(EM-DAT) can be used in this context. This function should be defined in a bottom-up
fashion and specific to each asset (or asset class) to better translate their idiosyncratic
vulnerability.
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Figure 8: Geolocation of world power plants by energy source

Source: Global Power Database version 1.3 (June 2021).

2.4.5 Market pricing

We can define the physical risk implied by the concentration scenario C as:

∆Loss (t, C) = β · DD (t, C) = β

n∑
j=1

xjΨj (λ, ϕ, t) Ωj
(
∆I (t, C)

)
(20)

where ∆Loss (t, C) is the relative loss due to the events on the portfolio and β is the
transmission factor of the direct damage DD (t, C) on the underlying to the loss of financial
value in the investment portfolio. For example, if the facilities of an energy producer are
damaged at 50%, the securities issued by this company will be impacted at 50%× β.

2.5 Other metrics

2.5.1 Scoring

The success of ESG scoring systems is one factor that explains the development of ESG
investing. Most of them are based on scoring trees. Let us consider the construction of a
two-level scoring tree. Raw data

(
Xi,1, . . . , Xi,m1

)
are normalized in order to obtain features(

Zi,1, . . . , Zi,m1

)
. These features are then aggregated to obtain sub-scores

(
Si,1, . . . ,Si,m2

)
generally by using a linear function:

Si,j =

m1∑
k=1

ω
(1)
j,kZi,k (21)
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Figure 9: An example of a two-level scoring tree
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Finally, we combine sub-scores in order to obtain the final score:

Si =

m2∑
j=1

ω
(2)
j Si,j (22)

In the example provided in Figure 9, we have six raw variables and three sub-scores. The
first sub-score depends on the first three variables, the second sub-score is related to the
next two variables whereas the last variable is already a sub-score. In the case of the first
sub-score, we notice that the weight of the first variable is twice the weight of the second or
third variables, whereas the second sub-score is an equally-weighted score between the fourth
and fifth variables. Finally, the final score is an average of the three sub-scores. In practice,
ESG rating agencies use multi-level tree structures, which is a straightforward extension of
the two-level tree structure. An example is given in Figure 10.

Figure 10: An example of a multi-level scoring tree (MSCI methodology)
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Remark 3. Generally, ESG rating providers consider two approaches for normalizing raw
data. They can use the z-scores method:

Zi,j =
Xi,j − m̂j

σ̂j
(23)

where m̂j and σ̂j are the empirical mean and standard deviation of the jth variable. In this
case, the range of Zi,j is between −3 and +3 most of the time, except when there are some
outliers or extreme observations. The second approach consists in applying a transformation
function on a given range

[
z−, z+

]
:

Zi,j = Tj

(
Xi,j

)
(24)

For instance, a typical range is the 0−10 normalization. Among the different transformation
functions, the most popular is the p-scores method:

Zi,j = z− +
(
z+ − z−

)
F̂j
(
Xi,j

)
(25)

where F̂j is the empirical probability distribution the jth variable17.

2.5.2 KPI

Below, we list other metrics that can be used for the construction of an investment portfolio
in a climate change framework. We focus on three metrics: avoided emissions, green revenues
and energy mix. However, the fund manager can use many other metrics, and we have
observed a proliferation of indicators in recent years. For example, we can create reserves-
based indicators. Indeed, from a stranding risk perspective, it is important to assess and price
available reserves. Both the reserves of coal, natural gas, etc. and infrastructure are included
in companies’ balance sheets. A change in the price of carbon or other regulations could cause
these assets to suddenly depreciate. This phenomenon is called capital stranding. Another
example of recent indicators concerns green patent, R&D and capital expenditure, because
the transition to a low-carbon economy requires high levels of investment and research. For
instance, the most ambitious scenarios introduce carbon capture and storage technology,
which are not currently available.

Avoided emissions Another metric to measure the environmental impact of a portfolio
is the avoided emissions. This metric aims to compare the carbon emissions of a product to
a reference or benchmark. For example, a hybrid car emits CO2, especially if we take into
account the life cycle of batteries. Nevertheless, by increasing their offer of hybrid cars, car
manufacturers still avoid the emissions that would have been emitted otherwise18. Assuming
that each company proposes np products or services, the avoided emissions is defined as:

AEi =

np∑
k=1

3∑
j=1

(
CEj (k; reference)− CEj (k; green)

)
where CEj (k; green) and CEj (k; reference) are the scope j emissions of the green and refer-
ence products k. The major issue is that this metric is subject to multiple accounting issues.
Therefore, defining this metric for a portfolio is particularly complex.

17A related approach is the Gaussian probability integral transform:

Zi,j = z− +
(
z+ − z−

)
Φ

(
Xi,j − m̂j

σ̂j

)
where Φ (x) is the normal probability distribution. This method is a special case of the p-scores method by
assuming the normality of the observations.

18Indeed, the direct emissions of these cars are at first reported in scope 2 of the electric producers.
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Green revenues An increasing number of companies operate in many sectors with a
diversified range of products and services. The green revenues measure the share of the
company’s business in sustainable activities. An issuer with 100% of green revenues is called
a pure player. For instance, revenues from electric cars can be accounted as green revenues
for car manufacturers. For utility companies, we can classify renewable production (wind,
solar, etc.) as green and other sources as brown. We note that even this simple distinction
can be controversial when it comes to nuclear. It becomes all the more elusive to make the
distinction between green and non-green revenues when looking at information technology
or health care sectors.

Energy mix For utility companies the energy mix can provide information on the envi-
ronmental performance of the company. This indicator is also particularly relevant when
assessing the risk at the sovereign level. Figure 11 presents the energy generation break-
down for some countries19. We can distinguish countries that rely on hydroelectric power
(Brazil, Norway), nuclear (France, Switzerland) and mixed solutions (Canada, Germany,
Spain, USA).

Figure 11: Bottom up energy mix (in %)

Source: Trucost reporting year 2019 & Authors’ calculations.

19Each grid circle represents 20% of energy generation. The scale of the radar chart is then 40% for
Canada, Germany, Spain and USA, 60% for China, France and Switzerland, 80% for Brazil and 100% for
Norway.
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3 Portfolio optimization

The development of sustainable and impact investing strategies related to climate change
implies including climate risk metrics in modern portfolio optimization. Generally, the solu-
tion consists in adding some management constraints. From a theoretical and mathematical
viewpoint, this does not fundamentally change the traditional approach to portfolio con-
struction. However, this can lead to high portfolio distortion from a practical viewpoint,
especially when constraints are tight, which can be the case with net zero carbon portfolios.

3.1 General framework

Traditional portfolio optimization problems can be written as:

x? (γ) = arg min
1

2
(x− b)> Σ (x− b)− γ (x− b)> µ (26)

s.t.

{
1>n x = 1
x ∈ Ω

where x = (x1, . . . , xn) is the active portfolio, b = (b1, . . . , bn) is the benchmark portfolio,
Σ is the covariance matrix of asset returns, µ is the vector of expected returns (or alpha
tilts/scores) and Ω is the set of constraints. For instance, we can impose a long-only con-
straint20, maximum sector deviation21, etc. If there is no benchmark (b = 0n), we retrieve
the Markowitz framework with the trade-off between the portfolio variance σ2 (x) = x>Σx
and the average return µ (x) = x>µ. The efficient frontier is then obtained by considering
different values of γ ∈ R. If we consider a benchmark (b 6= 0n), the trade-off concerns the

tracking error variance σ2
(
x | b

)
= (x− b)>Σ (x− b) and the average excess return of the

portfolio µ
(
x | b

)
= (x− b)> µ.

A climate risk measure can be introduced into the portfolio optimization by adding a
new constraint22:

Ω =

x : C (x) =

n∑
i=1

xiCi ≤ C+

 (27)

For instance, we may want to limit the portfolio’s carbon emissions — CEj (x) ≤ CE+
j —

or its carbon intensity — CIj (x) ≤ CI+
j . We may also want to reduce the portfolio’s

carbon emissions or intensity with respect to a benchmark: CEj (x) ≤ (1−R)CEj (b) or
CIj (x) ≤ (1−R)CIj (b) where R > 0 is the reduction rate. An alternative approach to
Problem (26-27) is to formulate the following objective function:

x? (γ, δ) = arg min
1

2
(x− b)>Σ (x− b)− γ (x− b)> µ+ γC (x) (28)

s.t.

{
1>n x = 1
x ∈ Ω

In this case, we obtain a three-dimensional efficient frontier: mean return vs. variance risk vs.
climate risk. As noticed by Pedersen et al. (2020), optimizing over three characteristics can

20In this case, we have Ω = {x : 0 ≤ xi ≤ 1}.
21Let ω−

(
Sj
)

and ω+
(
Sj
)

be the minimum and maximum weights for the sector Sj . We can impose that

Ω =
{
x : ω−

(
Sj
)
≤
∑

i∈Sj xi ≤ ω
+
(
Sj
)}

.
22We assume that the climate metric is an increasing function with respect to the climate risk. If we

consider a decreasing function, we replace the constraint by C (x) =
∑n

i=1 xiCi ≥ C−. In this case, we
would like to achieve a minimum value C− of the climate metric C (x).
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be challenging. However, these authors showed that the problem can be reduced to a trade-
off between the Sharpe ratio and the climate risk measure23. In what follows, we consider
another approach by fixing a minimum level of expected excess return — µ

(
x | b

)
≥ µ− —

or a maximum level of tracking error volatility — σ
(
x | b

)
≤ σ+. In this case, the efficient

frontier is reduced to a two-dimensional trade-off: variance risk vs. climate risk or mean
return vs. climate risk. This is the preferred approach of professionals when implementing
active management. A third approach consists in defining the benchmark portfolio and
finding the climate-optimal portfolio that minimizes the tracking error volatility. This is
equivalent imposing γ = 0 (or µ = 0n) in Problem (28). This approach is extensively used
in passive management (Andersson et al., 2016).

3.2 Portfolio decarbonization

3.2.1 Using carbon intensity

One of the most important topics in climate finance is portfolio decarbonization. The
underlying idea is to construct a portfolio x that tracks the benchmark portfolio b but with
a lower carbon risk metric. From a mathematical point of view, the optimization problem
is defined as24:

x? (R) = arg min
1

2
(x− b)>Σ (x− b) (29)

s.t.


1>n x = 1
x ≥ 0n∑n
i=1 xiCIi ≤ (1−R)CI (b)

where R is the reduction rate. Therefore, we minimize the tracking error volatility of the
portfolio x with respect to the benchmark by imposing a long-only constraint and reducing
the weighted average carbon intensity (WACI) of the benchmark. We notice that the carbon
intensity metric is used and not the carbon emissions metric, which may cause problems when
considering net zero carbon portfolios25. Since we both impose a constraint and minimize
the tracking error volatility, the portfolio x has fewer stocks than the benchmark b. In fact,
the number of stocks depends on several parameters: the reduction rate R, the number n
of stocks in the benchmark and the covariance matrix. This implies that the portfolio x is
less diversified than the benchmark b. In order to explicitly control the number of removed
stocks, Andersson et al. (2016) proposed a second portfolio decarbonization approach by
eliminating the m worst performing issuers in terms of carbon intensity. Let CIi:n be the
order statistics of (CI1, . . . ,CIn) such that:

minCIi = CI1:n ≤ CI2:n ≤ · · · ≤ CIi:n ≤ · · · ≤ CIn:n = maxCIi (30)

The carbon intensity bound CI(m,n) is defined as CI(m,n) = CIn−m+1:n where CIn−m+1:n

is the (n−m+ 1)-th order statistic of (CI1, . . . ,CIn). Eliminating the m worst performing

assets is equivalent to imposing the following constraint: CIi ≥ CI(m,n) ⇒ xi = 0. Finally,

23Although Pedersen et al. (2020) used ESG scores instead of climate scores, their analysis remains valid
when considering climate risks and not ESG risks.

24In the sequel, we omit the subscript j that defines the scope to simplify the notations.
25This issue is developed in Section 3.3 on page 28.
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we obtain the following optimization problem:

x? (m) = arg min
1

2
(x− b)>Σ (x− b) (31)

s.t.


1>n x = 1
x ≥ 0n
CIi ≥ CI(m,n) ⇒ xi = 0

Problem (31) is called the “order-statistic” approach, whereas Problem (29) is known as
“max-threshold”. Finally, a “naive” solution consists in re-weighting the remaining assets:

xi =
1
{
CIi < CI(m,n)

}
· bi∑n

k=1 1
{
CIk < CI(m,n)

}
· bk

(32)

Remark 4. Portfolio decarbonization requires the covariance matrix Σ to be estimated. A
first approach is to use the empirical covariance matrix of stock returns. A second solution
is to postulate a multivariate risk factor model:

Ri (t) = αi +BF (t) + εi (t) (33)

where F (t) is the vector of risk factors and εi (t) is the specific risk. By denoting Ω =
var
(
F (t)

)
and D = var

(
ε1 (t) , . . . , εn (t)

)
= diag

(
σ̃2

1 , . . . , σ̃
2
n

)
, we obtain Σ = BΩB> +D.

Let us illustrate the difference between the three approaches. The benchmark corre-
sponds to the S&P 500 index at the end of October 2021. To estimate the covariance
matrix, we use the single-factor CAPM model and the historical prices of the last three
years. In Figure 12, we report the tracking error volatility σ

(
x | b

)
with respect to the

reduction rate R when we consider scope 1 + 2. For example, we notice that reducing the
carbon intensity of 50% leads to a tracking error volatility of 12% for the max-threshold so-
lution. For the naive solution, the tracking error volatility is equal to 20%. We observe some
discrepancies between the three approaches26. In particular, the order-statistic and naive
solutions are satisfying only when the reduction is small, e.g. less than 30%. We also notice
that the slope of the tracking error risk is steeper when the reduction is high (see Figure
13). For scope 1 or 1 + 2, the slope changes when R ≈ 50%. Today, most asset managers
use scope 1 + 2 to decarbonize their portfolios because the data are more robust than scope
1 + 2 + 3. Nevertheless, there is pressure from ESG investors to increasingly consider scope
1 + 2 + 3. In this case, the changing point is lower and equal to R ≈ 30%. In Figure 14, we
show the overlap27 between optimal decarbonization portfolios. We notice that the portfolio
composition is very different if we consider scope 1 + 2 or scope 1 + 2 + 3. Indeed, when the
reduction is greater than 50%, the overlap is less than 90%. Considering the preference of
ESG investors for scope 1+2+3, we can anticipate large portfolio rebalancing in the future.

26This is particularly true when the carbon intensity corresponds to scope 1+2+3 (see Figure 25 on page
49).

27The overlap measure between two portfolios x and y is defined as:

overlap (x, y) = 1−
1

2

∑
|xi − yi| (34)

It is equal to 100% if the two portfolios are the same and 0% if the two portfolios have no common trading
positions.
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Figure 12: Efficient frontier of optimal decarbonization portfolios (S&P 500 index, October
2021, scope 1 + 2)
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Figure 13: Impact of the carbon scope on the tracking error volatility (S&P 500 index,
October 2021)
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Source: Trucost reporting year 2020 & Authors’ calculations.
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Figure 14: Overlap of optimal decarbonization portfolios (S&P 500 index, October 2021)
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Source: Trucost reporting year 2020 & Authors’ calculations.

3.2.2 Using carbon emissions

Let us consider an investor who has a nominal exposure Wi to the stock i. His carbon
emissions contribution is equal to:

CECi (Wi) =
WiFPi
MCi

CEi (35)

where CEi is the carbon emissions of the company i, FPi is the float percentage associated
with the stock i and MCi is the free-float market capitalization. If we consider a portfolio
x = (x1, . . . , xn), we cannot directly compute its carbon emissions contribution by averaging
the carbon emissions:

CE (x) 6=
n∑
i=1

xiCEi (36)

Indeed, this formula does not depend on the nominal value W of the portfolio. Therefore,
the correct formula is:

CE (x;W ) = CEC (x;W )

=

n∑
i=1

WiFPi
MCi

CEi (37)

where Wi = xiW . We notice that the carbon emission CE (x) of the portfolio is in fact the
carbon emission contribution CEC (x).

As explained on page 8, we can compute the carbon intensity of this investment as:

CIexact (x) =
CE (x;W )

Y (x;W )
(38)
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where:

Y (x;W ) =

n∑
i=1

WiFPi
MCi

Yi (39)

Finally, we obtain28:

CIexact (x) =

∑n
i=1 ωiCEi∑n
i=1 ωiYi

(40)

where:

ωi =
xiFPi
MCi

(41)

Formula (40) differs from the direct computation:

CIdirect (x) =

n∑
i=1

xiCIi (42)

Remark 5. If we assume that FPi = 100%, ωi is constant for a market-cap portfolio
because xi ∝MC−1

i . Therefore, the exact value of the carbon intensity reduces to:

CIexact (x) =

∑n
i=1 CEi∑n
i=1 Yi

(43)

Let us illustrate the discrepancy between the exact and direct computation. In Table 7,
we report the CE (x;W ) of three S&P 500 index portfolios. The first one corresponds to the
total value of the S&P 500 index as if the investor buys the 500 companies that make up the
index. Therefore, the carbon emissions of the S&P 500 index are respectively equal to 1.66
GtCO2e, 2.01 GtCO2e and 3.75 GtCO2e for the three scopes. If we consider an investment
of $1 bn, these figures become 10.5 ktCO2e, 48.9 ktCO2e and 91.4 ktCO2e. For an S&P 500
index portfolio whose value is $5 bn, we multiply these numbers by a factor of five. If we
compute the carbon intensity, we notice that it does not depend on the portfolio notional
even if we use the exact approach. We also remark that the direct computation of the
carbon intensity is less than the exact computation. For instance, we obtain 161.7 vs. 129.8
tCO2e/$ mn for scope 1 + 2. As explained before, there is no ordering between these two
measures. For instance, in Figure 15, we simulate portfolios of size n by randomly choosing
n stocks from the S&P 500 index and drawing their weights from the uniform distribution.
For each simulated portfolio x, we report the exact and direct values of CI (x). We verify
that the direct value can be less than or greater than the exact value. However, when we
fix n to 500, the direct value is systematically lower than the exact value.

Table 7: Carbon emission (in tCO2e) and intensity (tCO2e/$ mn) of S&P 500 index port-
folios

Scope
CE (x;W ) CI (x)

S&P 500 $1 bn $5 bn Exact Direct
1 1.66× 109 40.5× 103 202.5× 103 133.8 99.2

1 + 2 2.01× 109 48.9× 103 244.7× 103 161.7 129.8
1 + 2 + 3 3.75× 109 91.4× 103 457.2× 103 302.1 245.2

Source: Trucost reporting year 2020 & Authors’ calculations.

28We notice that the variable W vanishes.
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Figure 15: Exact vs. direct computation of scope 1 + 2 carbon intensity (S&P 500 index,
October 2021)
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For the last year, we have observed a trend from some investors that prefer to decarbonize
their portfolios using carbon emissions and not carbon intensities. This is equivalent to
defining the carbon constraint as CE (x;W ) ≤ CE+ (or CE (x;W ) ≤ (1−R)CE (b;W )).
We have:

CE (x;W ) ≤ CE+ ⇔
n∑
i=1

WiFPi
MCi

CEi ≤ CE+

=

n∑
i=1

xiCIMVi ≤ CE+

W
(44)

where CIMVi is a carbon intensity measure normalized by the market value MVi of the
issuer i:

CIMVi =
FPi
MCi

CEi =
CEi
MVi

(45)

and MVi =MCi/FPi. Therefore, Problem (29) becomes:

x? (R) = arg min
1

2
(x− b)>Σ (x− b) (46)

s.t.


1>n x = 1
x ≥ 0n∑n
i=1 xiCI

MV
i ≤ (1−R)

∑n
i=1 biCI

MV
i

Again, we obtain a quadratic program, which is appealing because it is very efficient to solve
from a computational point of view (Perrin and Roncalli, 2020).
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Figure 16: Portfolio decarbonization with carbon emissions (S&P 500 index, October 2021,
scope 1 + 2)
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Figure 16 shows the results of this portfolio decarbonization program. The first top-
left panel compares the tracking errors when targeting carbon emission or carbon intensity
reduction. We obtain higher tracking errors in the last case. Indeed, since absolute emissions
are concentrated on few issuers, it is possible to reduce carbon emissions by reducing the
allocation on these issuers, whereas the distribution of carbon intensities is less skewed,
implying that the constraint potentially impacts the weights of more issuers. The overlap
of the two optimized portfolios is given in the second top-right panel. We notice that we
obtain similar holdings, but the overlap decreases dramatically when the reduction is greater
than 80%. In the bottom-left panel, we compute the emission and intensity reduction levels
R̂ (CE) = 1 − CE (x?) /CE (b) and R̂ (CI) = 1 − CI (x?) /CI (b) using the direct and
exact formulas. Finally, the fourth bottom-right panel shows that the carbon intensity is
underestimated when we consider the direct formula.

3.3 Portfolio alignment

While portfolio decarbonization is a static problem, portfolio alignment implies a dynamic
strategy in order to comply with a given climate policy. Therefore, the dynamic problem
is trickier since it involves several rebalancing decisions and depends on the future behav-
ior of corporate issuers. Two main climate policies are generally used: the Paris-aligned
benchmarks (PAB) approach and the net zero emissions (NZE) scenario for 2050.

3.3.1 Paris-aligned benchmarks

The goal of the Paris agreement on climate change is to limit global warming to well below
2◦C. In this context, the EU Technical Expert Group on sustainable finance (hereafter
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TEG) has proposed to create two climate benchmark labels29: climate transition benchmark
(CTB) and Paris-aligned benchmark (PAB). These labels are structured along the following
common principles:

1. A year-on-year self-decarbonization of 7% on average per annum, based on scope 1, 2
and 3 emissions;

2. A minimum carbon intensity reduction R− compared to the investable universe;

3. A minimum exposure to sectors highly exposed to climate change.

For the CTB label, the minimum reduction R− is set to 30% whereas it is equal to 50% for
the PAB label. Other constraints are also imposed such as issuer exclusions (controversial
weapons and societal norms violators), a minimum green share revenue or some activity
exclusions. Nevertheless, in what follows, we focus on the three principles that correspond
to the main constraints.

Decarbonization pathway Let t0 be the base date of the climate benchmark. The initial
carbon intensity reduction must be equal to R− (30% for CTB and 50% for PAB). Then,
the carbon intensity must decrease by 7% every year. The minimum reduction R (t0, t) of
the carbon intensity between the current date t and the base date t0 is then equal to:

R (t0, t) = 1−
(
1− 7%

)t−t0 · (1−R−
)

(47)

Figure 17 shows this decarbonization pathway for CTB and PAB indexes when the base
year is 2021. We observe that the difference between the two trajectories mainly concerns
the start of the period, because the two reductions converge when t is sufficiently large
(t > 2040).

At date t, the CTB and PAB labels impose the following inequality constraint for the
portfolio x (t):

CI
(
x (t)

)
≤
(
1−R (t0, t)

)
· CI

(
b (t0)

)
(48)

We notice the importance of the base year t0 since it defines the reference level of the
carbon intensity. Indeed, the reference level is equal to CI

(
b (t0)

)
and not CI

(
b (t)

)
. If

we collectively and significantly reduce the carbon emissions and the corporations make
effort to fight climate change, we can assume that CI

(
b (t)

)
≤ CI

(
b (t0)

)
, meaning that

the carbon intensity of the traditional benchmark will be reduced. Let T be a reference
date for the climate scenario (T may be equal to 2030 or 2050), we must observe that
CI
(
b (T )

)
� CI

(
b (t0)

)
and even CI

(
x (T )

)
≈ CI

(
b (T )

)
. Otherwise, this implies that

we will be unsuccessful in fighting climate change, reducing GHG emissions and respecting
the Paris agreement.

Climate impact sector The CTB and PAB labels require that the exposure to sectors
highly exposed to climate change is at least equal to the exposure in the investment universe.
TEG (2019a) distinguishes two types of sectors: (1) High climate impact sectors (HCIS
or CISHigh), (2) Low climate impact sectors (LCIS or CISLow). The first category is
made up of sectors that are key to the low-carbon transition. They correspond to the
following NACE classes30: A. Agriculture, Forestry, and Fishing; B. Mining and Quarrying;

29According to the TEG (2019a), “a climate benchmark is defined as an investment benchmark that
incorporates — next to financial investment objectives — specific objectives related to greenhouse gas
(GHG) emission reductions and the transition to a low-carbon economy through the selection and weighting
of underlying benchmark constituents”.

30NACE is the European Union’s classification of economic activities. It is made up of 21 classes.
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Figure 17: Decarbonization pathway of CTB and PAB labels

C. Manufacturing; D. Electricity, Gas, Steam, and Air Conditioning Supply; E. Water
Supply; Sewerage, Waste Management, and Remediation Activities; F. Construction; G.
Wholesale and Retail Trade; Repair of Motor Vehicles and Motorcycles; H. Transportation
and Storage; L. Real Estate Activities. Let CISHigh (x) =

∑
i∈CISHigh

xi be the HCIS
weight of Portfolio x. At each rebalancing date t, we must verify that:

CISHigh
(
x (t)

)
≥ ϕCIS · CISHigh

(
b (t)

)
(49)

where ϕCIS = 1.

TEG (2019b, Appendix B, pages 26-170) has published a mapping between the NACE
classes and several sector classification structures: BICS (Bloomberg), GICS (MSCI and
S&P), ICB (FTSE) and TRBC (Refinitiv). In the case of the GICS, there are 129 sub-
industries out of a total of 185 that are classified as high climate impact sectors. This
represents 69.73% of the sub-industries. This classification has been criticized because this
figure is very high31. This would mean that almost all activities are critical for building
a low-carbon economy. Therefore, only two sectors are classified in low climate impact
sectors (Communication Services and Financials), but more than half of the Health Care
and Information Technology sub-industries are viewed as high climate impact sectors. The
original idea of the CIS constraint was to continue financing the sectors that are essential
for reaching a low-carbon economy (e.g. Energy and Utilities) and at the same time pro-
moting investments in green issuers instead of brown issuers in these sectors. Nevertheless,
the constraint (49) is not very restrictive with this broad HCIS measure. Moreover, this
constraint encourages substitutions between sectors or industries and not substitutions be-
tween issuers within a same sector. Therefore, the trade-off is not necessarily between green
electricity and brown electricity, but for example between electricity generation and health
care equipment.

31Certainly too high to be credible.
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Besides the broad HCIS measure, we propose a narrow measure, which is more restrictive
and focuses on a small number of sub-industries. The mapping between the NACE classes
and the GICS sectors is given in Table 13 on page 44. We notice that the narrow HCIS
measure concerns four main sectors: Energy, Industrials, Utilities and Real Estate. This
scope is complemented by one industry group (Transportation) and four industries (Food
Products, Metals & Mining, Construction Materials, Food & Staples Retailing). To compare
the narrow and broad measures, we report in Table 8 the weights and the carbon intensity
(scope 1+2+3) of high climate impact sectors when the investment universe is the S&P 500
index. Since the carbon intensity of the S&P 500 is equal to 245 tCO2e/$ mn, it is equal to
380 tCO2e/$ mn for the sectors of the broad HCIS classification. We verify that the broad
HCIS universe has a higher carbon intensity than the reference universe. Nevertheless, the
broad HCIS universe represents 54.59% of the S&P 500 index, which is a very high figure.
This means that more than half of the S&P 500 index has a high climate impact. If we
consider the narrow HCIS universe, the weighted average carbon intensity is equal to 681
tCO2e/$ mn, which is 80% larger than the carbon intensity of the broad HCIS universe.
Moreover, the narrow HCIS universe represents less than 20% of the S&P 500 index. These
figures are more consistent than those obtained for the broad measures. Indeed, it is difficult
to justify that 69% of the Health Care sector, 48% of the Information Technology but 0%
of the Financial sector are classified as high climate impact sectors when we consider the
broad HCIS measure.

Table 8: Weights and carbon intensity of high climate impact sectors

Sector
S&P 500 Narrow HCIS Broad HCIS
bs CIs bs CIs bs CIs

Communication Services 10.89% 80
Consumer Discretionary 13.57% 190 10.22% 185
Consumer Staples 6.10% 355 2.73% 348 6.10% 355
Energy 2.81% 790 2.81% 790 2.81% 790
Financials 11.13% 67
Health Care 12.74% 126 8.56% 152
Industrials 7.97% 330 7.97% 330 6.32% 368
Information Technology 27.50% 99 13.30% 139
Materials 2.45% 966 0.44% 850 2.45% 966
Real Estate 2.55% 198 2.55% 198 2.55% 198
Utilities 2.30% 2 669 2.30% 2 669 2.30% 2 669
Total 100.00% 245 18.79% 681 54.59% 380

One-period optimization problem The optimization program is an extension of Prob-
lem (29) where we introduce the two inequality constraints (48) and (49):

x? (t) = arg min
x(t)

1

2
σ2
(
x (t) | b (t)

)
+ λτ

(
x (t) | x? (t− 1)

)
(50)

s.t.



1>n x (t) = 1
x (t) ≥ 0n
CI
(
x (t)

)
≤
(
1−R (t0, t)

)
· CI

(
b (t0)

)
CISHigh

(
x (t)

)
≥ ϕCIS · CISHigh

(
b (t)

)∣∣∣∑i∈Sectorj xi (t)−
∑
i∈Sectorj bi (t)

∣∣∣ ≤ δj
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where λ ≥ 0. The objective function depends on the tracking error risk:

σ
(
x (t) | b (t)

)
=

√(
x (t)− b (t)

)>
Σ (t)

(
x (t)− b (t)

)
(51)

Since we face a dynamic process, it is useful to control the one-way turnover of the portfolio
between t− 1 and t defined as:

τ
(
x (t) | x? (t− 1)

)
=

1

2

∥∥x (t)− x? (t− 1)
∥∥

1
(52)

We can impose a maximum turnover constraint τ
(
x (t) | x? (t− 1)

)
≤ τ+. Nevertheless, the

convergence toward an optimal solution is not guaranteed. Therefore, we prefer to introduce
the turnover in the objective function and control the turnover aversion with the coefficient
λ. For instance, we minimize the tracking error risk if λ is set to 0 and the turnover risk if
λ is set to +∞. Otherwise, λ measures the trade-off between tracking error and turnover
risks. We can also impose some limits concerning sector deviation. This is the purpose of
the fifth constraint.

We notice that the computation of x? (t) at time t requires us to know the covariance
matrix Σ (t), the carbon intensities CIi (t), the investable universe b (t) and the previous
optimized portfolio x? (t− 1). At the current year t1, these observations are only available for
the dates between t0 and t1. Therefore, it is impossible to compute x? (t1 + 1), x? (t1 + 2),
etc. Nevertheless, we can do an exercise by assuming that the world does not change. In
this case, the covariance matrix of asset returns, the carbon intensities of issuers and the
investable universe remain constant, implying that Σ (t) = Σ (t0), CIi (t) = CIi (t0) and
b (t) = b (t0). The results of the sequential optimization process starting from the base year
t0 = 2021 and ending at the target date T = 2040 are given in Figures 18 and 19, and
Table 9 when the turnover aversion coefficient λ is set to zero. We can make a number of
observations. First, we have optimized the portfolios by only considering the decarbonization
pathway of CTB and PAB labels in Figure 18. The difference between the top-left and top-
right panels is the choice of the scope. The top-left panel presents the tracking error risk
σ
(
x (t) | b (t)

)
of optimized portfolios when we consider scope 1+2. When we include scope

3, we obtain the top-right panel. We observe that the magnitude is very different. Indeed,
the tracking error risk is less than 80 bps for t ≤ 2040 when we consider scope 1+2, whereas
it can reach 4% for the PAB label when we include scope 3. In the sequel, we only consider
this last case since CTB and PAB labels require all CO2 emissions to be covered, and in
particular upstream and downstream emissions. In this context, we have computed the
HCIS weight CISHigh

(
x? (t)

)
of scope 1 + 2 + 3 optimized portfolios. We verify that the

exposure to high climate impact sectors decreases over time when we impose a higher carbon
emission reduction. For example, CISHigh

(
x? (2040)

)
is equal to 5.49% (narrow) and 9.73%

(broad) for the CTB label32, whereas it is equal to 18.79% (narrow) and 54.59% (broad) for
the current investable universe (see Table 8 on page 31). Therefore, we introduce the HCIS
constraint and obtain the results given in Figure 19. We observe that the constraint using
the broad HCIS universe is tighter than the constraint using the narrow HCIS universe.
Indeed, the tracking error risks are similar with or without the narrow HCIS universe33.
This is not the case when we compare the tracking error risks obtained with or without the
broad HCIS universe34. For the CTB label, σ

(
x? (2040) | b (2040)

)
is respectively equal to

2.66% when we only consider the carbon emissions reduction, 2.83% when we add the narrow
HCIS constraint and 4.43% when we consider the broad HCIS constraint (see Table 9). The

32For the PAB label, CISHigh

(
x? (2040)

)
is equal to 4.86% (narrow) and 2.23% (broad).

33We have to compare the top-right panel in Figure 18 and the top-left panel in Figure 19.
34We have to compare the top-right panel in Figure 18 and the top-right panel in Figure 19.

32



Portfolio Construction with Climate Risk Measures

Figure 18: The impact of scope 3 on CTB and PAB labels
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Source: Trucost reporting year 2020 & Authors’ calculations.

Figure 19: The impact of the HCIS constraint on CTB and PAB labels

2020 2025 2030 2035 2040

0

1

2

3

4

2020 2025 2030 2035 2040

0

2

4

6

8

10

2020 2025 2030 2035 2040

0

5

10

15

20

2020 2025 2030 2035 2040

0

5

10

15

20

Source: Trucost reporting year 2020 & Authors’ calculations.

33



Portfolio Construction with Climate Risk Measures

figures become 4.19%, 4.43% and 9.97% for the PAB label. Therefore, the introduction of
the HCIS constraint is not neutral. This is particularly true for the broad universe in the
medium term (t > 2025) and the narrow measure in the long term (t > 2040). In Figure
19, we have also reported the one-way turnover τ

(
x? (t) | x? (t− 1)

)
. We observe a high

turnover at the beginning of the period35 and at the end of the period. In the last case, the
carbon reductions are very high, and we obtain concentrated portfolios that are far to be
diversified. In order to illustrate this lack of diversification, we compute the effective number
of bets which is the inverse of the Herfindahl index H (x) =

∑n
i=1 x

2
i . It is currently equal

to 70.56 for the S&P 500 index, meaning the S&P 500 index portfolio is equivalent to an
equally-weighted portfolio of 70.56 stocks (see Table 10). Until 2030, the effective number
of bets of optimized portfolios is relatively close to this of the S&P 500 index and greater
than 65. Nevertheless, we observe a drop in terms of diversification in 2040. For instance,
it is equal to 5.48 for the PAB label with the broad HCIS constraint.

Table 9: Tracking error risk of CTB and PAB labels

Year
CTB PAB

Scope 3 Narrow Broad Scope 3 Narrow Broad
2021 0.12% 0.13% 0.13% 0.33% 0.37% 0.39%
2022 0.16% 0.18% 0.19% 0.39% 0.44% 0.47%
2023 0.20% 0.23% 0.23% 0.46% 0.51% 0.56%
2024 0.24% 0.27% 0.28% 0.52% 0.59% 0.65%
2025 0.29% 0.33% 0.35% 0.59% 0.66% 0.78%
2030 0.62% 0.69% 0.83% 1.20% 1.33% 2.09%
2035 1.28% 1.40% 2.23% 2.55% 2.72% 4.25%
2040 2.66% 2.83% 4.43% 4.19% 4.43% 9.97%

Table 10: Effective number of bets

Year
CTB PAB

Scope 3 Narrow Broad Scope 3 Narrow Broad
2020 70.56 70.56 70.56 70.56 70.56 70.56
2021 69.95 70.29 70.15 68.37 69.30 68.78
2022 69.77 70.24 70.53 68.06 68.93 68.30
2023 69.48 70.22 69.88 67.59 68.43 67.95
2024 69.07 69.73 69.68 67.02 68.12 67.11
2025 68.66 69.52 69.08 66.58 67.46 66.75
2030 66.26 67.24 66.42 66.64 68.82 66.85
2035 67.36 69.61 66.15 76.35 76.42 44.72
2040 76.26 75.67 41.45 49.97 42.61 5.48

Remark 6. In our implementation, the CTB and PAB labels only differ because of the
minimum reduction R−. In this case, we can show that the CTB approach is lagging behind
the PAB approach by 4.64 years36. This explains the difference between the two labels.

Remark 7. In practice, the ex-post tracking error risk will be lower than those computed in
this section, in particular when t is greater than 2025. The reason is that we assume that

35Because of the implementation of the minimum reduction R−.
36See Appendix A.4.2 on page 46.
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the future investable universe b (t) is equal to the current investable universe b (t0). In fact,
we expect that the market-cap benchmark will follow a decarbonization pathway at a level,
which will be certainly lower than the CTB and PAB labels (e.g. 2 − 4% instead of the 7%
objective).

Remark 8. Our empirical results are very different from those obtained by Bolton et al.
(2021). Indeed, these authors found that the tracking error of optimized portfolios is less
than 2% by 2050. In fact, their calculations use “scope 1 + 2, and only scope 3 upstream
first-tier data, which only covers the direct supply chain”, whereas our computation is based
on the total sum of carbon scopes and includes full indirect upstream emissions. On the
other hand, “first-tier indirect emissions are defined as GHG Protocol scope 2 emissions,
plus the company’s first-tier upstream supply chain — their direct suppliers”. Therefore,
they omitted a significant part of the upstream emissions, in particular as we get close to the
final product. This makes a big difference. On pages 50 and 51, we report the tracking error
of CTB and PAB labels when we consider scope 1+2 and then add scope 3 direct upstream37

or the full scope 3 (see Figures 26, 27 and 28). By only considering scope 3 direct upstream
emissions, the tracking error risk is approximately equal to the figure obtained with scope
1 + 2. In this case, we confirm that the tracking error is less than 2% by 2050 for the
CTB label. Nevertheless, the EU regulation considers the entire scope 3, and not only the
direct upstream. Moreover, we also observe that adding the broad HCIS constraint is a
supplementary source of tracking error risk. These results show that the cost for investors
may be higher when we consider both scope 3 and the HCIS constraint. Nevertheless, as
argued before, we can assume that the investable universe in ten, twenty or thirty years’
time will be very different and more aligned than the current one.

So far, we have illustrated the sequential optimization process when the turnover aversion
risk λ is set to 0. In fact, the optimization process is static since we don’t need to know the
optimized portfolio x? (t− 1) to compute x? (t). If λ > 0, the computation of x? (t) depends
on the past values x? (t− 1) , x? (t− 2) , . . . , x? (t0) and the optimization process becomes
sequential. In this case, it is a special case of the multi-period optimization problem.

Multi-period optimization problem In this framework, the optimization problem be-
comes:

x? (t) = arg min
x(t),x(t+1),...

T∑
s=t

e−ρ(s−t)
(

1

2
σ2
(
x (s) | b (s)

)
+ λτ

(
x (s) | x (s− 1)

))
(53)

s.t.



1>n x (s) = 1
x (s) ≥ 0n
CI
(
x (s)

)
≤
(
1−R (t0, s)

)
· CI

(
b (t0)

)
CISHigh

(
x (s)

)
≥ ϕCIS · CISHigh

(
b̃ (s)

)∣∣∣∑i∈Sectorj xi (s)−
∑
i∈Sectorj b̃i (s)

∣∣∣ ≤ δj
σ
(
x (s) | b (s)

)
=

√(
x (s)− b̃ (s)

)>
Σ̃ (s)

(
x (s)− b̃ (s)

)
τ
(
x (s) | x (s− 1)

)
=

1

2

∥∥x (s)− x (s− 1)
∥∥

1

CI
(
x (s)

)
=
∑n
i=1 xi (s) C̃Ii (s)

37To be more precise, we use scope 1 and first-tier indirect emissions. Trucost defines these latter as “GHG
Protocol scope 2 emissions, plus the company’s first-tier upstream supply chain — their direct suppliers.
The goal of this enhancement is to include some of the company’s most relevant upstream scope 3 emissions,
while limiting the extent of the double counting of emissions. The upstream supply chain of companies in
Trucost’s database is calculated using its EEIO model”.
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where ρ is the discount rate. This problem is complex because three variables are stochas-

tic: the benchmark b̃ (s), the covariance matrix Σ̃ (s) and the carbon intensities C̃Ii (s).
Therefore, we face an optimization problem with a stochastic objective function and some
stochastic constraints. In order to solve this problem, the underlying idea is to integrate all
the stochastic constraints into the objective function and minimize the mathematical expec-
tation. Another approach consists in replacing the stochastic variables by their mathemati-

cal expectations: b (s) = E
[
b̃ (s)

∣∣∣Ft], Σ (s) = E
[

Σ̃ (s)
∣∣∣Ft] and CIi (s) = E

[
C̃Ii (s)

∣∣∣Ft]
where Ft is the filtration.

Solving Problem (53) requires choosing the time horizon T . We recall that the objective
is to smooth the allocation in order to reduce the turnover between two rebalancing dates.
Therefore, it is not optimal to choose T far away from the current date t. For instance,
it is better to set T − t equal to two, three or five years. The underlying idea is to avoid
some rebalancing decisions at time t that will not be consistent with the future rebalancing
decisions at time s ∈ [t+ 1, . . . , T ]. This approach is appealing since we can also impose
that38 b (s) ≈ b (t), Σ (s) ≈ Σ (t) and CIi (s) ≈ CIi (t) for s ∈ [t+ 1, . . . , T ]. In this case, at
the current date t, we have to estimate n× (T − t+ 1) variables — x (t) , x (t+ 1) , . . . , x (T )
— where n is the number of assets in the investable universe. Therefore, the dimension of
the optimization problem is relatively high. For instance, in the case of the S&P 500 index,
we have to estimate 500 × 5 = 2 500 variables if the current date t is 2021 and the time
horizon T is 2025. Another difficulty lies in the treatment of the `1-penalty function, which
corresponds to the turnover measure. A first method to numerically solve Problem (53)
is to use the augmented variables technique (Bourgeron et al., 2018; Perrin and Roncalli,
2020). In this case, we write x (s+ 1) = x (s) + ∆x+ (s)−∆x− (s) where ∆x+ (s) ≥ 0n and
∆x− (s) ≥ 0n. The `1-penalty function becomes then:

λ

T∑
s=t

e−ρ(s−t)τ
(
x (s) | x (s− 1)

)
=
λ

2

T∑
s=t

e−ρ(s−t)

 n∑
i=1

∆x+
i (s) +

n∑
i=1

∆x−i (s)

 (54)

With this technique, Problem (53) remains a QP problem but with 3n×(T − t+ 1) variables:
x (t) ,∆x+ (t) ,∆x− (t) , x (t+ 1) ,∆x+ (t+ 1) ,∆x− (t+ 1) . . . , x (T ) ,∆x+ (T ) ,∆x− (T ). If
we consider the previous example, we have to estimate 3 × 500 × 5 = 7 500 variables if the
current date t is 2021 and the time horizon T is 2025. Here, we face a dimensionality curse.
For instance, this approach is not adapted for the MSCI World index. The second method
is to solve Problem (53) by using the ADMM algorithm and the proximal operator of the `1-
penalty function (Perrin and Roncalli, 2020). This method is very efficient since the x-step
consists39 in solving (T − t+ 1) QP problems40 of dimension n and the y-step is reduced to
apply the soft-thresholding operator. In the case of the S&P 500 index, we need less than
one second to obtain the solution when T − t is set to five years. On average, the multi-
period optimization problem helps to reduce the turnover of the single-period optimization
problem by a factor of 15− 20%.

Remark 9. When λ > 0, Problem (50) is equivalent to Problem (53) by imposing that the
time horizon T is equal to the current date t.

So far, we have assumed that the carbon intensity is constant. We now consider an
approach where we introduce the dynamics of carbon intensity for each issuer. In particular,

38We can also forecast the trend of the carbon intensity in order to estimate CIi (s). We apply this
approach in the next section.

39We notice that the function fx (x) is fully separable since there is no interaction between x (s) and
x (s+ 1).

40These QP problems have the same form as Problem (50) where λ is equal to zero.

36



Portfolio Construction with Climate Risk Measures

the underlying idea is to penalize issuers who do not make any effort to reduce their carbon
footprint.

3.3.2 Net zero objective

In Section 3.3.1 on page 28, we have performed a portfolio alignment by considering a global
decarbonization path for the portfolio but without taking into account the decarbonization
path of the issuers. In this section, we go further by using net zero metrics. The simplest
solution is to consider the carbon intensity trend for each issuer. Nevertheless, we can use
other more sophisticated measures (Lombard et al., 2022).

A simple net zero metric Using the historical Trucost data between 2013 and 2019, we
project the trend of total absolute emissions (scope 1 + 2 + 3) between 2020 and 2050 — for
some assets, we have the historical data for the year 2020 and the trend is then projected
between 2021 and 2050. Among the 500 constituents of the S&P500 index in October
2021, 450 issuers have full reporting allowing us to build a consistent trajectory. Filling in
upstream/downstream values around reported values allows us to improve the coverage up
to 493 issuers which corresponds to 98.6% of the index with a synthetic trend trajectory41.
The trend is normalized at the initial year t0 such that we have:

ĈI
trend

i (t) = mtrend
i (t) · CIi (t0) (55)

where the multiplicative factor mtrend
i (t) is linear:

mtrend
i (t) = 1 + βtrend

i · (t− t0) (56)

Therefore, we have mtrend
i (t0) = 1 for all the assets. Since we have the following relationship

between the multiplicative factor and the reduction:

mtrend
i (t) = 1−Ri (t0, t) (57)

the reduction Ri (t0, t) between t0 and t of the asset i is then the opposite of the projected
trend:

Ri (t0, t) = −βtrend
i · (t− t0) (58)

In Figure 20, we have reported the multiplicative factor mtrend
i (t) for the 500 constituents

of the S&P 500 index. 70% of trends are upward, meaning that only 30% of the issuers have
begun to substantially reduce their carbon emissions.

Portfolio metrics of carbon reduction Before considering the net zero optimization
problem, we define the following reference reduction measures:

• The capitalization-weighted (or portfolio) reduction is given by:

RCW
x (t0, t) =

n∑
i=1

xi (t0) ·Ri (t0, t) (59)

This measure controls the portfolio weighted average reduction.

41It is important to note that the pivot year, from which we shift from historical emissions to projected
emissions, is an important parameter that plays a key role, in particular in the context of a dynamic use.
This problem is illustrated in Lombard et al. (2022). Nevertheless, we consider the 2019 pivot year because
it corresponds to the last reporting year with a high coverage.
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Figure 20: Carbon emission trends mtrend
i (t) of the S&P index constituents

2010 2015 2020 2025 2030 2035 2040 2045 2050

-2

-1

0

1

2

3

4

5

6

Source: Trucost reporting year 2019/2020 & Authors’ calculations.

• The equally-weighted reduction is equal to:

REW
x (t0, t) =

1

n

n∑
i=1

Ri (t0, t) (60)

This measure does not depend on the portfolio weights. It restricts the universe to
issuers whose equally-weighted aggregation of the trajectories meets a given require-
ment. For instance, the concept of net zero alignment has a priori no reason to depend
on the size of a company or its weight in the portfolio.

• The intensity-weighted reduction measure is defined as:

RIW
x (t0, t) =

∑n
i=1 µ (CIi) ·Ri (t0, t)∑n

i=1 µ (CIi)
(61)

where µ (CI) is an increasing function of the carbon intensity. Similarly, as the equally-
weighted reduction, this measure restricts the investment universe to issuers whose
intensity-weighted aggregation of the trajectories meets a given requirement. The ra-
tionale is that a net zero trajectory can only be met if high-intensive issuers, which
in terms of weight are relatively underrepresented in investment indices, have reduc-
tion pathways in line with the requirement. This measure may be used to build a
quantitative engagement strategy.

• Finally, the inverse intensity-weighted reduction is the mirror of the previous one:

RNW
x (t0, t) =

∑n
i=1 µ (CIi)−1 ·Ri (t0, t)∑n

i=1 µ (CIi)−1 (62)
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It ensures that low-intensive issuers remain in line and do not increase their emissions.
This corresponds to a pure decarbonization strategy.

In Figure 21, we have reported the (opposite of) NZE reduction metrics of the S&P 500
index. Since the values have a positive sign, this indicates that we observe a positive carbon
emissions trend at the portfolio level whatever the climate risk measure42 (capitalization-,
equally-, intensity- or inverse intensity-weighted). Based on the trends between 2013 and
2019, the S&P 500 index is clearly not on track to achieve carbon neutrality by 2050.

Figure 21: NZE reduction metrics of the S&P 500 index (carbon intensity, scope 1 + 2 + 3)
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Source: Trucost reporting year 2019 & Authors’ calculations.

NZE optimization problem The optimization problem is the same as previously ex-
cept that we explicitly introduce the NZE trajectories for the individual carbon intensity
trajectories. For instance, we can formulate the NZE problem as follows:

xNZE (t) = arg min
x

1

2
(x− b)>Σ (x− b) (63)

s.t.


1>n x = 1
x ≥ 0n
CINZE (x) ≤

(
1−R (t0, t)

)
· CINZE

(
b (t0)

)
where CINZE (x) uses the projected trends:

CINZE (x) =

n∑
i=1

xi · ĈI
trend

i (t) (64)

42We consider the square root function µ (CIi) =
√

CIi to compute RIW
x (t0, t) and RNW

x (t0, t).
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We can compare the solution xNZE (t) with the one xDCN (t) obtained by considering the

current carbon intensities CIi (t0) instead of the estimated values ĈI
trend

i (t). This latter
can be viewed as a pure decarbonization portfolio. In order to measure the discrepancy
between the NZE portfolio xNZE (t) and the decarbonization portfolio xDCN (t), we compute
the active share between the weights of the two portfolios:

AS
(
xNZE (t) , xDCN (t)

)
=

1

2

∥∥∥xNZE (t)− xDCN (t)
∥∥∥

1
(65)

The results are given in Table 11. We observe that the divergence between the NZE portfolio
and the decarbonization portfolio increases with the target date and the reduction level
R (t0, t).

Table 11: Active share between the NZE portfolio and the decarbonization portfolio

Year
R (t0, t)

10% 20% 30% 40% 50% 60% 70% 80%
2025 1.0% 1.3% 2.0% 3.2% 4.4% 7.8% 18.4% 48.9%
2030 1.1% 1.4% 2.7% 4.8% 9.2% 15.3% 28.5% 58.3%
2035 1.1% 1.8% 3.3% 5.9% 11.0% 17.3% 30.6% 60.0%
2040 1.1% 2.0% 3.6% 6.3% 11.5% 18.0% 31.3% 60.6%
2045 1.2% 2.1% 3.8% 6.5% 11.8% 18.3% 31.6% 60.8%
2050 1.2% 2.1% 3.8% 6.7% 11.9% 18.5% 31.7% 60.9%

Remark 10. This divergence will increase in the future when we have more exhaustive data
and robust NZE measures. For instance, Lombard et al. (2022) use issuer targets and trend
slopes to perform NZE portfolios and show that they are highly sensitive to the ambition of
carbon issuers.

3.4 The case of bonds

In the case of an equity portfolio, we define the tracking risk as the tracking error variance
of Portfolio x with respect to the Benchmark b:

T R
(
x | b

)
= σ2

(
x | b

)
= (x− b)>Σ (x− b) (66)

For a bond portfolio, it can be replaced by the active risk, which can be measured with
respect to the weights, the modified duration and the duration-time-spread:

T R
(
x | b

)
=

nSector∑
s=1


∣∣∣∣∣∣
∑
i∈s

(xi − bi)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
i∈s

(xi − bi) MDi

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
i∈s

(xi − bi) DTSi

∣∣∣∣∣∣
 (67)

where nSector is the number of sectors, s is the sector index, MDi is the modified duration of
Bond i and DTSi is the duration-times-spread of Bond i. As argued by Ben Slimane (2021),
the active risk is not sufficient to define the objective function. Indeed, the portfolio solution
must also take into account the liquidity cost, otherwise we can obtain theoretical bond
portfolios that cannot be implemented in practice. Therefore, the optimization procedure for
bonds is less straightforward than for stocks. For instance, it is not realistic to rebalance the
portfolio at a given frequency, e.g. every six months or every year. It may be more relevant to
define a long-term decarbonization or NZE portfolio and implement a management transition
from the current portfolio to the target portfolio. This issue is left for future research.
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4 Conclusion

In this survey dedicated to portfolio construction with climate risk measures, we first present
several metrics and then show how climate risk measures can be integrated into traditional
portfolio allocation problems. Some years ago, carbon emissions and intensity were the two
main climate risk measures. In this case, portfolio optimization reduced to portfolio decar-
bonization. Since 2018, we have observed major development of new climate risk metrics.
For example, one of the main challenges is to define carbon transition pathways. This means
defining a carbon reduction scenario at the global level and the carbon trajectory of cor-
porate issuers. Even if this research axis is not mature, it completely changes the practice
of portfolio alignment, whose earlier approaches can be viewed as an enhanced method of
portfolio decarbonization. Alongside the usefulness of this survey for both academics and
professionals, this research paper also shows two important results. First, decarbonization
is more difficult when we consider scope 3 carbon emissions. This is a big issue because
asset owners and managers are encouraged by regulators and the society to go beyond scope
1 + 2. Second, portfolio alignment requires new metrics that are more difficult to estimate,
implying more uncertainties about the portfolio solution. As a result, these two combined
factors (scope 3 and portfolio alignment) will have significant impact on investors in the
coming years. Implementing a net zero carbon portfolio alignment with scope 3 emissions
and carbon trajectories is therefore a big challenge for investors. In particular, we can
predict that carbon investing will have a major effect on asset allocation with respect to
traditional investing.
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A Appendix

A.1 Notations

Table 12: Climate risk measures

Symbol Description
Ci Generic climate risk measure
CEi Carbon emission
CIi Carbon intensity
CEi,j , CIi,j Carbon scope j
Ri Carbon reduction
Ti Climate temperature objective
CPMi Carbon price margin
CBi Carbon beta of the stock i
CSi Climate score
CMi Climate metric or KPI

A.2 Data

Table 13 gives the correspondence between the NACE code the GICS code (Sector/Industry
Group/Industry) when we consider the narrow measure of high climate impact sectors.

Table 13: The narrow measure of high climate impact sectors

NACE GICS
Code Sector Code Sector

A Agriculture, Forestry & Fishing 302020 Food Products

B Mining & Quarrying
10 Energy

151040 Metals & Mining
C Manufacturing 20 Industrials

D
Electricity, Gas, Steam

55 Utilities
& Air Conditioning Supply

E
Water Supply

Sewerage, Waste Management
& Remediation Activities

F Construction 151020 Construction Materials

G
Wholesale & retail trade

301010 Food & Staples Retailing
Repair of Motor Vehicles & Motorcycles

H Transportation & Storage 2030 Transportation
L Real Estate Activities 60 Real Estate

Source: Authors’ calculations.

A.3 Scope 3 emissions

Scope 3 emissions of Trucost are defined as follows: other indirect greenhouse gas emissions,
such as from the extraction and production of purchased materials and fuels, transport-
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related activities in vehicles not owned or controlled by the reporting entity, electricity-
related activities (e.g. T&D losses) not covered in scope 2, outsourced activities, waste
disposal, etc (in line with GHG protocol standards). It seems that this definition does not
contain use of sold product, end of life treatment of sold product, downstream transportation
and distribution, etc.

A.4 Mathematical results

A.4.1 Relationship between xi, ωi and Yi

In the case n = 2, the direct measure of the carbon intensity (WACI) is equal to:

CIj (x) = x1CI1,j + x2CI2,j (68)

whereas its exact measure is defined as:

CIj (x) =
ω1

CE1,j

MV1
+ ω2

CE2,j

MV2

ω1
Y1

MV1
+ ω2

Y2

MV2

(69)

Since we have x1 + x2 = 1 and ω1 + ω2 = 1, we obtain:

ω1
CE1,j

MV1
+ (1− ω1)

CE2,j

MV2

ω1
Y1

MV1
+ (1− ω1)

Y2

MV2

= x1
CE1,j

Y1
+ (1− x1)

CE2,j

Y2
(70)

We deduce that:

x1 =
ω1

Y1

MV1

ω1
Y1

MV1
+ (1− ω1)

Y2

MV2

(71)

and:

ω1 =

x1

(
Y1

MV1

)−1

x1

(
Y1

MV1

)−1

+ (1− x1)

(
Y2

MV2

)−1 (72)

More generally, we have:

xi =
ωi

Yi
MVi∑n

k=1
ωk

Yk
MVk

(73)

and:

ωi =

xi

(
Yi
MVi

)−1

∑n

k=1
xk

(
Yk
MVk

)−1 (74)

45



Portfolio Construction with Climate Risk Measures

A.4.2 Equivalence between CTB and PAB pathways

Since we have:
RCTB (t0, t) = 1−

(
1− 7%

)t−t0 (
1−R−CTB

)
(75)

and:
RPAB (t0, t) = 1−

(
1− 7%

)t−t0 (
1−R−PAB

)
(76)

we deduce that there is a date tCTB such that RCTB (t0, tCTB) = RPAB (t0, tPAB). It follows
that:

tCTB = tPAB +

ln

(
1−R−PAB

1−R−CTB

)
ln
(
1− 7%

)
= tPAB + 4.6365 years (77)
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A.5 Complementary results

A.5.1 Additional figures and tables

Figure 22: Histogram of carbon emission (log scale, tCO2e)

Source: Trucost reporting year 2019 & Authors’ calculations.

Table 14: Rank correlation matrix (in %) of carbon metrics

CE1 CE2 CE3 CI1 CI2 CI3

CE1 100.0
CE2 78.1 100.0
CE3 81.9 81.9 100.0
CI1 70.3 32.8 32.0 100.0
CI2 38.0 55.3 18.1 54.4 100.0
CI3 55.5 36.6 55.6 66.6 44.7 100.0

Source: Trucost reporting year 2019 & Authors’ calculations.
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Figure 23: Histogram of carbon intensity (log scale, tCO2e/$ mn)

Source: Trucost reporting year 2019 & Authors’ calculations.

Table 15: Rank correlations per sector

Sector
CE1 CE2 CE1 CI1 CI2 CI1

CE2 CE3 CE3 CI2 CI3 CI3

Communication Services 89.2 91.8 89.2 36.3 27.1 11.6
Consumer Discretionary 80.4 76.2 80.3 34.8 7.7 29.1
Consumer Staples 74.1 81.3 76.0 39.4 30.4 56.6
Energy 69.6 75.8 72.9 35.6 0.7 9.6
Financials 83.7 87.5 87.1 26.4 58.3 −4.3
Health Care 93.9 94.7 94.3 26.4 −12.4 25.7
Industrials 69.4 82.2 69.5 27.9 42.3 12.7
Information Technology 83.1 92.2 81.7 66.2 72.9 55.4
Materials 79.3 79.7 73.4 50.1 4.5 28.9
Real Estate 76.5 69.2 79.9 9.5 −27.3 29.9
Utilities 34.7 55.9 83.1 −14.0 −4.8 68.5

Source: Trucost reporting year 2019 & Authors’ calculations.
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Figure 24: Efficient frontier of optimal decarbonization portfolios (S&P 500 index, October
2021, scope 1)
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Source: Trucost reporting year 2020 & Authors’ calculations.

Figure 25: Efficient frontier of optimal decarbonization portfolios (S&P 500 index, October
2021, scope 1 + 2 + 3)
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Source: Trucost reporting year 2020 & Authors’ calculations.
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Figure 26: Tracking error of CTB and PAB labels when implementing the decarbonization
pathway
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Source: Trucost reporting year 2020 & Authors’ calculations.

Figure 27: Tracking error of CTB and PAB labels when implementing the decarbonization
pathway and the narrow HCIS constraint
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Source: Trucost reporting year 2020 & Authors’ calculations.
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Figure 28: Tracking error of CTB and PAB labels when implementing the decarbonization
pathway and the broad HCIS constraint
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Source: Trucost reporting year 2020 & Authors’ calculations.

A.5.2 Computation of the carbon trajectory

Using the observations in Table 16, we obtain the following estimates: β̂0 = 3479.77 and
β̂1 = −1.7055. We deduce that:

CEtrend
i,1 (2019 + h) = β̂0 + β̂1 (2019 + h)

= 36.33− 1.7055h

We have: CEtrend
i,1 (2020) = 34.62, CEtrend

i,1 (2021) = 32.92, CEtrend
i,1 (2030) = 17.57, CEtrend

i,1 (2040) =
0.51, etc.

Table 16: Carbon emissions (scope 1) of the company Λ in MtCO2e

Year 2006 2007 2008 2009 2010 2011 2012
CEi,1 (t) 57.80 58.46 57.90 55.13 51.63 46.34 47.09

Year 2013 2014 2015 2016 2017 2018 2019
CEi,1 (t) 46.08 44.37 41.75 39.40 36.26 40.71 40.91

Source: Trucost reporting year 2019.
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