## Behavioral bias in number processing: Evidence from analysts' expectations

Séance du Conseil Scientifique

Autorité des Marchés Financiers (AMF)

05/12/2017

Paris, France

#### **Tristan Roger**

Université Paris-Dauphine, PSL Research University





Article co-écrit avec P. Roger et A. Schatt R&R at Journal of Economic Behavior and Organization



Revised ≅ Expanded Edition SENSE

[HOW THE MIND CREATES MATHEMATICS]

STANISLAS DEHAENE

Database and descriptive statistics

Univariate analysis

Multivariate analysis

Recommendations

Stock splits

Conclusion

- The human brain processes numbers on a mental number line
  - Small numbers are represented on the left part of the line
  - Large numbers are represented on the right part of the line
    - The opposite is observed in cultures where people write from the right to the left

Database and descriptive statistics

Univariate analysis

Multivariate analysis

Recommendations

Stock splits

Conclusion

- Number processing (Weber's law)
  - Distance effect
    - Faster to recognize that 10 is greater than 1 than to perceive that 6 is greater than 5

### Illustration of the distance effect



Database and descriptive statistics

Univariate analysis

Multivariate analysis

Recommendations

Stock splits

Conclusion

- Number processing (Weber's law)
  - Distance effect
    - Faster to recognize that I0 is greater than I than to perceive that 6 is greater than 5
  - Size effect
    - Faster to recognize that 6 is greater than 5 than to perceive that 35 is greater than 34
- Numbers are processed by the brain on a logarithmic scale
  - Nieder (2005)
- Deviations from the logarithmic scale are observed for small numbers
  - Dehaene et al. (2008); Hyde and Spelke (2009)

- Number processing
  - Logarithmic scale



Linear scale



 Education "linearizes" numerical distances (especially for small numbers)

- Results of an experiment on Munduruku adults
  - Dehaene et al. (2008)
- Subjects are asked to locate numbers on a line





- □ Results of an experiment on American adults (Dehaene et al., 2008)
  - Subjects are asked to locate numbers on a line





Database and descriptive statistics

Univariate analysis

Multivariate analysis

Recommendations

Stock splits

Conclusion

- Financial analysts
  - Earnings forecasts
  - Recommendations
  - Target prices
    - Significant abnormal returns following target price revisions (both unconditional and conditional on contemporaneously issued recommendations and earnings forecast revisions)
      - Brav and Lehavy (2003), Journal of Finance
      - Asquith, Mikhail and Au (2005), Journal of Financial Economics

Database and descriptive statistics

Univariate analysis

Multivariate analysis

Recommendations

Stock splits

Conclusion

- Analysts' optimism bias
  - Conflicts of interest
    - Incentives to produce inaccurate figures
      - Lim (2001)
      - Mehran and Stulz (2007)
      - Bradshaw, Huang and Tan (2014)
      - Jackson (2005)
  - Behavioral biases
    - Some heuristics lead analysts to miscalculate
      - Cen, Hilary and Wei (2013)

Database and descriptive statistics

Univariate analysis

Multivariate analysis

Recommendations

Stock splits

Conclusion

- What is our paper about?
  - We evidence a specific behavioral bias
    - The small price bias
  - Analysts process small stock prices differently than large stock prices
  - Our paper is grounded in recent research in neuropsychology on number processing

Database and descriptive statistics

Univariate analysis

Multivariate analysis

Recommendations

Stock splits

Conclusion

- Number processing summing up
  - Individuals tend to use a linear scale for small numbers and a logarithmic scale for larger numbers
    - A price variation from \$3 to \$3.2 is seen as 20 cts increase
    - A price variation from \$101 to \$110 is seen (approximately) as a 10% increase (not a \$9 variation)
- Our hypothesis
  - If analysts use a linear scale for small price stocks and a logarithmic scale for large price stocks, they will provide more optimistic target prices for small price stocks than for large price stocks

## Linear vs. Logarithmic

 People evaluate correctly absolute distances between small numbers but underrepresent absolute distances between large numbers



 Corollary: People evaluate correctly relative distances between large numbers but exaggerate relative distances between small numbers

# Database and descriptive statistics

Univariate analysis

Multivariate analysis

Recommendations

Stock splits

Conclusion

#### Data

- 2000-2013 period
- Data on target prices (I/B/E/S)
  - 814,117 target prices issued by 9,141 analysts on 6,423 stocks
- Data on stock prices (CRSP)
  - NYSE, AMEX, NASDAQ
  - Stock prices
  - Stock splits
- Market, size, book-to-market and liquidity factors (WRDS, Kenneth French's website)
- Data on recommendations (I/B/E/S)
- Compustat

# Database and descriptive statistics

Univariate analysis

Multivariate analysis

Recommendations

Stock splits

Conclusion

## Descriptive statistics

|      | Number of target prices | Number of analysts | No. of analysts per firm | Proportion of optimistic target prices | Average implied return |
|------|-------------------------|--------------------|--------------------------|----------------------------------------|------------------------|
| 2000 | 34,027                  | 3,111              | 9.62                     | 96.04%                                 | 37.89%                 |
| 2001 | 39,466                  | 3,428              | 11.41                    | 93.64%                                 | 31.95%                 |
| 2002 | $46,\!441$              | 3,258              | 12.21                    | 92.40%                                 | 29.09%                 |
| 2003 | 48,109                  | 2,657              | 11.13                    | 84.40%                                 | 17.46%                 |
| 2004 | $51,\!505$              | 2,728              | 11.20                    | 85.55%                                 | 17.17%                 |
| 2005 | 52,049                  | 2,785              | 10.87                    | 86.46%                                 | 16.73%                 |
| 2006 | $53,\!442$              | 2,743              | 11.07                    | 85.69%                                 | 16.57%                 |
| 2007 | 56,504                  | 2,730              | 11.34                    | 86.83%                                 | 16.77%                 |
| 2008 | 67,619                  | 2,679              | 11.59                    | 88.44%                                 | 27.82%                 |
| 2009 | $65,\!544$              | 2,603              | 12.76                    | 82.22%                                 | 18.82%                 |
| 2010 | $69,\!254$              | 2,989              | 14.78                    | 87.62%                                 | 18.52%                 |
| 2011 | $76,\!180$              | 3,044              | 15.57                    | 89.11%                                 | 20.48%                 |
| 2012 | $72,\!677$              | 2,913              | 15.49                    | 87.53%                                 | 18.95%                 |
| 2013 | 81,300                  | 2,781              | 16.03                    | 83.43%                                 | 13.46%                 |

Database and descriptive statistics

## Univariate analysis

Multivariate analysis

Recommendations

Stock splits

Conclusion

## Univariate analysis

- Stock prices and implied returns
  - We build five price categories
    - Category I: stock prices between \$0 and \$10
    - Category 2: stock prices between \$10 and \$20
    - Category 3: stock prices between \$20 and \$30
    - Category 4: stock prices between \$30 and \$40
    - Category 5: stock prices above \$40
  - □ For each quarter between January 2000 and December 2013, we compute the average implied return for each price category

## Univariate analysis



Database and descriptive statistics

## Univariate analysis

Multivariate analysis

Recommendations

Stock splits

Conclusion

## Univariate analysis

- Stock prices and market capitalization
  - There exists a strong correlation between nominal prices and firm size
  - However, this correlation is not perfect due to
    - Choice of IPO price
    - Stock splits
    - Stock dividends
  - We use a double sort on nominal prices and market capitalization to disentangle size and price effects

## Univariate analysis

#### Average implied returns



## Univariate analysis

#### Signed forecast errors



Database and descriptive statistics

Univariate analysis

## Multivariate analysis

Recommendations

Stock splits

Conclusion

## Multivariate analysis

- The premium in implied returns observed for small price stocks may be explained by risk factors, firms' characteristics and analysts' characteristics
- Fama MacBeth (1973) approach
  - As in Brav et al. (2005), Barber et al. (2013)

$$IR_{i,j,t} = \alpha_t + \beta_{1,t} SIZE_{j,t} + \beta_{2,t} MOM_{j,t} + \beta_{3,t} BTM_{j,t} + NegativeIR_{i,j,t}$$
 
$$+ \sum_{k=1}^{4} \gamma_{k,t} PRICE\_CAT_{j,t}^{k} + NegativeIR_{i,j,t} \times \sum_{k=1}^{4} \theta_{k,t} PRICE\_CAT_{j,t}^{k}$$
 
$$+ \zeta_{i,t} AFE_{i,t} + \eta_{j,t} IFE_{j,t} + \delta_{t} Firm\_Controls_{j,t} + \epsilon_{i,j,t}$$

Optimistic target prices

Pessimistic target prices

Database and descriptive statistics

Univariate analysis

## Multivariate analysis

Recommendations

Stock splits

Conclusion

## Multivariate analysis

- Fama MacBeth (1973) approach
  - We therefore have 168 (14 years) cross-sectional regressions
  - We report the average of the estimated intercept and slope coefficients
  - Standard errors are adjusted using the Newey-West procedure

Database and descriptive statistics

Univariate analysis

## Multivariate analysis

Recommendations

Stock splits

Conclusion

## Multivariate analysis

- Fama MacBeth (1973) approach
  - Controls
    - Operating profitability and investments
      - Fama and French (2015)
    - Dividend yield
    - Conflicts of interest
    - Distressed firms
    - 52-week high
    - Lottery-type stocks
      - LIDX index of Kumar, Page and Spalt (2016)
    - Skewness

#### Regression of target prices' implied returns on firm characteristics

|                                                             | Mo          | del 1          | Мс          | odel 2         | Mo          | Model 3        |  |
|-------------------------------------------------------------|-------------|----------------|-------------|----------------|-------------|----------------|--|
|                                                             | Coefficient | Standard error | Coefficient | Standard error | Coefficient | Standard error |  |
| Intercept                                                   | 0.4199***   | 0.0271         |             |                |             |                |  |
| Negative IR                                                 | -0.2638***  | 0.0134         | -0.2215***  | 0.0104         | -0.2220***  | 0.0097         |  |
| \$0 to \$10 dummy                                           | 0.1956***   | 0.0134         | 0.1560***   | 0.0109         | 0.0981***   | 0.0053         |  |
| \$10 to \$20 dummy                                          | 0.0736***   | 0.0092         | 0.0637***   | 0.0065         | 0.0355***   | 0.0039         |  |
| \$20 to \$30 dummy                                          | 0.0314***   | 0.0046         | 0.0301***   | 0.0035         | 0.0175***   | 0.0031         |  |
| \$30 to \$40 dummy                                          | 0.0114***   | 0.0032         | 0.0141***   | 0.0025         | 0.0089***   | 0.0023         |  |
| $0$ to $10$ dummy $\times$ Negative IR                      | -0.2429***  | 0.0129         | -0.1963***  | 0.0082         | -0.2008***  | 0.0086         |  |
| $10 \text{ to } 10 \text{ dummy} \times \text{Negative IR}$ | -0.1016***  | 0.0085         | -0.0813***  | 0.0048         | -0.0959***  | 0.0050         |  |
| 20 to $40$ dummy × Negative IR                              | -0.0481***  | 0.0035         | -0.0379***  | 0.0023         | -0.0512***  | 0.0044         |  |
| $30$ to $40$ dummy $\times$ Negative IR                     | -0.0179***  | 0.0030         | -0.0131***  | 0.0029         | -0.0192***  | 0.0039         |  |
| Size                                                        | -0.0110***  | 0.0008         | -0.0063***  | 0.0012         | 0.0010      | 0.0012         |  |
| Book-to-market                                              | -0.0216***  | 0.0037         | -0.0078***  | 0.0018         | -0.0048***  | 0.0017         |  |
| Momentum                                                    | -0.0110*    | 0.0061         | -0.0170***  | 0.0047         | 0.0163***   | 0.0027         |  |
| Operating profitability                                     |             |                | '           |                | -0.0027**   | 0.0012         |  |
| Investment                                                  |             |                |             |                | 0.0038***   | 0.0012         |  |
| Dividend Yield                                              |             |                |             |                | -0.6962***  | 0.1143         |  |
| External financing                                          |             |                |             |                | 0.0455***   | 0.0068         |  |
| Earnings management                                         |             |                |             |                | 0.0011      | 0.0020         |  |
| Negative earnings dummy                                     |             |                |             |                | 0.0262***   | 0.0000         |  |
| 52 week high ratio                                          |             |                |             |                | -0.2435***  | 0.0200         |  |
| LIDX                                                        |             |                |             |                | 0.0513***   | 0.0100         |  |
| Skewness                                                    |             |                |             |                | -0.0040***  | 0.0000         |  |
| Industry fixed effects                                      | 1           | 1O             | Y           | ES             | Y           | YES            |  |
| Analyst fixed effects                                       | 1           | VO             | Y           | ES             | Y           | YES            |  |
| Average adjusted $\mathbb{R}^2$                             | 32          | .81%           | 70          | 0.59%          | 75          | 5.05%          |  |
| Number of observations                                      | 76          | 1,271          | 76          | 1,271          | 49          | 00,733         |  |

| <b>T</b> / | _    | 1 1    | - |
|------------|------|--------|---|
| 1 /        | [oc] | $\sim$ |   |
| I V        | ( )( |        |   |
|            |      |        |   |

|                                                               | Coefficient | Standard error |  |  |  |
|---------------------------------------------------------------|-------------|----------------|--|--|--|
| Intercept                                                     | 0.4199***   | 0.0271         |  |  |  |
| Negative IR                                                   | -0.2638***  | 0.0134         |  |  |  |
| \$0 to \$10 dummy                                             | 0.1956***   | 0.0134         |  |  |  |
| \$10 to \$20 dummy                                            | 0.0736***   | 0.0092         |  |  |  |
| \$20 to \$30 dummy                                            | 0.0314***   | 0.0046         |  |  |  |
| \$30 to \$40 dummy                                            | 0.0114***   | 0.0032         |  |  |  |
| $0 \text{ to } 10 \text{ dummy} \times \text{Negative IR}$    | -0.2429***  | 0.0129         |  |  |  |
| $10 \text{ to } 20 \text{ dummy} \times \text{Negative IR}$   | -0.1016***  | 0.0085         |  |  |  |
| $$20 \text{ to } $30 \text{ dummy} \times \text{Negative IR}$ | -0.0481***  | 0.0035         |  |  |  |
| $$30 \text{ to } $40 \text{ dummy} \times \text{Negative IR}$ | -0.0179***  | 0.0030         |  |  |  |
| Size                                                          | -0.0110***  | 0.0008         |  |  |  |
| Book-to-market                                                | -0.0216***  | 0.0037         |  |  |  |
| Momentum                                                      | -0.0110*    | 0.0061         |  |  |  |

|      | •          | C                         | 1 1    | . ,    |        | • 1  | 1       |                        | 0       | characteristics  |
|------|------------|---------------------------|--------|--------|--------|------|---------|------------------------|---------|------------------|
| - 12 | OCTOCCION  | $\alpha$ t                | target | Dricoc | imn    | 100  | roturne | On                     | Hrm     | charactorictice  |
| 11   | egi ession | $\mathbf{O}_{\mathbf{I}}$ | target | DITLES | TITIDI | rea. | returns | $\mathbf{O}\mathbf{H}$ | TIT TIT | Character istics |
| -    | 0          |                           | 0      | 1      | 1      | -    |         | -                      |         |                  |

|                                                               | Mo          | del 1          | Mo          | odel 2         | Model 3     |               |
|---------------------------------------------------------------|-------------|----------------|-------------|----------------|-------------|---------------|
|                                                               | Coefficient | Standard error | Coefficient | Standard error | Coefficient | Standard erro |
| Intercept                                                     | 0.4199***   | 0.0271         |             |                |             |               |
| Negative IR                                                   | -0.2638***  | 0.0134         | -0.2215***  | 0.0104         | -0.2220***  | 0.0097        |
| \$0 to \$10 dummy                                             | 0.1956***   | 0.0134         | 0.1560***   | 0.0109         | 0.0981***   | 0.0053        |
| \$10 to \$20 dummy                                            | 0.0736***   | 0.0092         | 0.0637***   | 0.0065         | 0.0355***   | 0.0039        |
| \$20 to \$30 dummy                                            | 0.0314***   | 0.0046         | 0.0301***   | 0.0035         | 0.0175***   | 0.0031        |
| \$30 to \$40 dummy                                            | 0.0114***   | 0.0032         | 0.0141***   | 0.0025         | 0.0089***   | 0.0023        |
| $0 \text{ to } 10 \text{ dummy} \times \text{Negative IR}$    | -0.2429***  | 0.0129         | -0.1963***  | 0.0082         | -0.2008***  | 0.0086        |
| $10 \text{ to } 20 \text{ dummy} \times \text{Negative IR}$   | -0.1016***  | 0.0085         | -0.0813***  | 0.0048         | -0.0959***  | 0.0050        |
| $$20 \text{ to } $30 \text{ dummy} \times \text{Negative IR}$ | -0.0481***  | 0.0035         | -0.0379***  | 0.0023         | -0.0512***  | 0.0044        |
| $$30 \text{ to } $40 \text{ dummy} \times \text{Negative IR}$ | -0.0179***  | 0.0030         | -0.0131***  | 0.0029         | -0.0192***  | 0.0039        |
| Size                                                          | -0.0110***  | 0.0008         | -0.0063***  | 0.0012         | 0.0010      | 0.0012        |
| Book-to-market                                                | -0.0216***  | 0.0037         | -0.0078***  | 0.0018         | -0.0048***  | 0.0017        |
| Momentum                                                      | -0.0110*    | 0.0061         | -0.0170***  | 0.0047         | 0.0163***   | 0.0027        |
| Operating profitability                                       |             | •              |             |                | -0.0027**   | 0.0012        |
| Investment                                                    |             |                |             |                | 0.0038***   | 0.0012        |
| Dividend Yield                                                |             |                |             |                | -0.6962***  | 0.1143        |
| External financing                                            |             |                |             |                | 0.0455***   | 0.0068        |
| Earnings management                                           |             |                |             |                | 0.0011      | 0.0020        |
| Negative earnings dummy                                       |             |                |             |                | 0.0262***   | 0.0000        |
| 52 week high ratio                                            |             |                |             |                | -0.2435***  | 0.0200        |
| LIDX                                                          |             |                |             |                | 0.0513***   | 0.0100        |
| Skewness                                                      |             |                |             |                | -0.0040***  | 0.0000        |
| Industry fixed effects                                        | N           | /O             | Y           | 'ES            | Y           | ES            |
| Analyst fixed effects                                         | N           | VO             | YES         |                | YES         |               |
| Average adjusted $R^2$                                        | 32          | .81%           | 70          | 0.59%          | 75.05%      |               |
| Number of observations                                        | 76          | 1,271          | 76          | 51,271         | 490,733     |               |

| Model 2 | 1 |
|---------|---|
|---------|---|

|                                                               | Coefficient | Standard error |
|---------------------------------------------------------------|-------------|----------------|
| Intercept                                                     |             |                |
| Negative IR                                                   | -0.2215***  | 0.0104         |
| \$0 to \$10 dummy                                             | 0.1560***   | 0.0109         |
| \$10 to \$20 dummy                                            | 0.0637***   | 0.0065         |
| \$20 to \$30 dummy                                            | 0.0301***   | 0.0035         |
| \$30 to \$40 dummy                                            | 0.0141***   | 0.0025         |
| $0 \text{ to } 10 \text{ dummy} \times \text{Negative IR}$    | -0.1963***  | 0.0082         |
| $10 \text{ to } 10 \text{ dummy} \times \text{Negative IR}$   | -0.0813***  | 0.0048         |
| $$20 \text{ to } $30 \text{ dummy} \times \text{Negative IR}$ | -0.0379***  | 0.0023         |
| $$30 \text{ to } $40 \text{ dummy} \times \text{Negative IR}$ | -0.0131***  | 0.0029         |
| Size                                                          | -0.0063***  | 0.0012         |
| Book-to-market                                                | -0.0078***  | 0.0018         |
| Momentum                                                      | -0.0170***  | 0.0047         |
|                                                               |             |                |

#### Regression of target prices' implied returns on firm characteristics

|                                                             | Model 1     |                | Mo          | odel 2         | Model 3     |                |
|-------------------------------------------------------------|-------------|----------------|-------------|----------------|-------------|----------------|
|                                                             | Coefficient | Standard error | Coefficient | Standard error | Coefficient | Standard error |
| Intercept                                                   | 0.4199***   | 0.0271         |             |                |             | -              |
| Negative IR                                                 | -0.2638***  | 0.0134         | -0.2215***  | 0.0104         | -0.2220***  | 0.0097         |
| \$0 to \$10 dummy                                           | 0.1956***   | 0.0134         | 0.1560***   | 0.0109         | 0.0981***   | 0.0053         |
| \$10 to \$20 dummy                                          | 0.0736***   | 0.0092         | 0.0637***   | 0.0065         | 0.0355***   | 0.0039         |
| \$20 to \$30 dummy                                          | 0.0314***   | 0.0046         | 0.0301***   | 0.0035         | 0.0175***   | 0.0031         |
| \$30 to \$40 dummy                                          | 0.0114***   | 0.0032         | 0.0141***   | 0.0025         | 0.0089***   | 0.0023         |
| $0 to 10 dummy \times Negative IR$                          | -0.2429***  | 0.0129         | -0.1963***  | 0.0082         | -0.2008***  | 0.0086         |
| $10 \text{ to } 20 \text{ dummy} \times \text{Negative IR}$ | -0.1016***  | 0.0085         | -0.0813***  | 0.0048         | -0.0959***  | 0.0050         |
| 20 to $40$ dummy × Negative IR                              | -0.0481***  | 0.0035         | -0.0379***  | 0.0023         | -0.0512***  | 0.0044         |
| $30$ to $40$ dummy $\times$ Negative IR                     | -0.0179***  | 0.0030         | -0.0131***  | 0.0029         | -0.0192***  | 0.0039         |
| Size                                                        | -0.0110***  | 0.0008         | -0.0063***  | 0.0012         | 0.0010      | 0.0012         |
| Book-to-market                                              | -0.0216***  | 0.0037         | -0.0078***  | 0.0018         | -0.0048***  | 0.0017         |
| Momentum                                                    | -0.0110*    | 0.0061         | -0.0170***  | 0.0047         | 0.0163***   | 0.0027         |
| Operating profitability                                     |             |                |             |                | -0.0027**   | 0.0012         |
| Investment                                                  |             |                |             |                | 0.0038***   | 0.0012         |
| Dividend Yield                                              |             |                |             |                | -0.6962***  | 0.1143         |
| External financing                                          |             |                |             |                | 0.0455***   | 0.0068         |
| Earnings management                                         |             |                |             |                | 0.0011      | 0.0020         |
| Negative earnings dummy                                     |             |                |             |                | 0.0262***   | 0.0000         |
| 52 week high ratio                                          |             |                |             |                | -0.2435***  | 0.0200         |
| LIDX                                                        |             |                |             |                | 0.0513***   | 0.0100         |
| Skewness                                                    |             |                |             |                | -0.0040***  | 0.0000         |
| Industry fixed effects                                      |             | NO             |             | ES             |             | ES             |
| Analyst fixed effects                                       |             | NO             | YES         |                | YES         |                |
| Average adjusted $R^2$                                      |             | 2.81%          | 70.59%      |                | 75.05%      |                |
| Number of observations                                      | 761,271     |                | 761,271     |                | 490,733     |                |

|                                                               | Model 3     |                |  |
|---------------------------------------------------------------|-------------|----------------|--|
|                                                               | Coefficient | Standard error |  |
| Intercept                                                     |             |                |  |
| Negative IR                                                   | -0.2220***  | 0.0097         |  |
| \$0 to \$10 dummy                                             | 0.0981***   | 0.0053         |  |
| \$10 to \$20 dummy                                            | 0.0355***   | 0.0039         |  |
| \$20 to \$30 dummy                                            | 0.0175***   | 0.0031         |  |
| \$30 to \$40 dummy                                            | 0.0089***   | 0.0023         |  |
| $0 \text{ to } 10 \text{ dummy} \times \text{Negative IR}$    | -0.2008***  | 0.0086         |  |
| $10 \text{ to } 10 \text{ dummy} \times \text{Negative IR}$   | -0.0959***  | 0.0050         |  |
| $$20 \text{ to } $30 \text{ dummy} \times \text{Negative IR}$ | -0.0512***  | 0.0044         |  |
| $30$ to $40$ dummy $\times$ Negative IR                       | -0.0192***  | 0.0039         |  |
| Size                                                          | 0.0010      | 0.0012         |  |
| Book-to-market                                                | -0.0048***  | 0.0017         |  |
| Momentum                                                      | 0.0163***   | 0.0027         |  |

Database and descriptive statistics

Univariate analysis

Multivariate analysis

#### **Recommendations**

Stock splits

Conclusion

#### Recommendations

- Risk adjusted returns and stock prices
  - Analysts' forecast higher risk-adjusted returns for small price stocks
  - □ Thus, analysts should make more favorable recommendations for small price stocks
  - Except if the differences in implied returns are the result of a behavioral bias
  - What happens when we look at recommendations?
    - Double sort on market capitalization and nominal prices

### Recommendations



Database and descriptive statistics

Univariate analysis

Multivariate analysis

Recommendations

#### **S**tock splits

Conclusion

## Stock splits

## Stock splits

- We look at implied returns pre-split and post-split (with a 3-month window around the split date)
- Using stock splits allows us to make sure that the relationship between nominal prices and implied returns is not driven by other factors
- We have
  - 532 splits with a ratio between 1.25 and 2
  - 869 splits with a ratio larger or equal to 2

Database and descriptive statistics

Univariate analysis

Multivariate analysis

Recommendations

#### **Stock splits**

Conclusion

## Stock splits

- □ For splits with ratio between 1.25 and 2:
  - Pre-split implied return of 15.78%
  - Post-split implied return of 20.30%
- For splits with ratio larger or equal to 2:
  - Pre-split implied return of 16.83%
  - Post-split implied return of 22.81%
- □ The differences are highly significant

Database and descriptive statistics

Univariate analysis

Multivariate analysis

Recommendations

#### **Stock splits**

Conclusion

## Stock splits

- Propensity score matching approach (Rosenbaum and Rubin, 1983)
  - We build a sample of controls firms with the same propensity to split as our splitting firms
  - We match on the following characteristics
    - Log price
    - Market capitalization
    - Previous return
    - Previous volatility
    - Book-to-market
    - Average previous implied return

## Stock splits

### □ Difference-in-differences analysis

|                                   | Average implied return |               |            |  |  |  |
|-----------------------------------|------------------------|---------------|------------|--|--|--|
|                                   | Splitting firms        | Control firms | Difference |  |  |  |
| Split ratio between 1.25 and 2    |                        |               |            |  |  |  |
| Before splits                     | 0.1447                 | 0.1845        | -0.0398    |  |  |  |
| After splits                      | 0.1853                 | 0.1927        | -0.0074    |  |  |  |
| Difference                        | 0.0406                 | 0.0082        | 0.0324***  |  |  |  |
| Split ratio greater or equal to 2 |                        |               |            |  |  |  |
| Before splits                     | 0.1565                 | 0.1879        | -0.0314    |  |  |  |
| After splits                      | 0.2031                 | 0.2019        | 0.0013     |  |  |  |
| Difference                        | 0.0466                 | 0.0140        | 0.0326***  |  |  |  |

Database and descriptive statistics

Univariate analysis

Multivariate analysis

Recommendations

Stock splits

**Conclusion** 

### Conclusion

- Nominal prices and implied returns
  - We provide strong evidence of a behavioral bias which
    - Leads analysts to be more optimistic on small price stocks
- Consequences for the research on analysts
  - □ Target prices issued on small price stocks are not accurate and are overoptimistic.

Database and descriptive statistics

Univariate analysis

Multivariate analysis

Recommendation:

Stock splits

**Conclusion** 

### Conclusion

### Other implications

- If educated professionals such as financial analysts suffer from this small price bias, other market participants may suffer from it as well.
- This small price bias may be the explanation for puzzles such as
  - Abnormal returns of small price stocks
    - Bandi, Russell and Sabbagui (2009), Birru-Wang(JFE 2016)
  - Higher volatility of small price stocks
  - Stock return comovements driven by price level
    - Green and Hwang (JFE 2009)
  - Abnormal returns following splits

Database and descriptive statistics

Univariate analysis

Multivariate analysis

Recommendations

Stock splits

**Conclusion** 

### Conclusion

- Additional evidence
  - Another law of small numbers: Patterns of trading prices in experimental markets
    - Roger T., Bousselmi W., Roger P. and M. Willinger
  - Experimental markets
    - Small price markets and large price markets
    - Greater deviation from fundamental value in small price markets than in large price markets
    - Results are found between-participants and withinparticipants